
Language Technology

Language Processing with Perl and Prolog
Chapter 13: Dependency Parsing

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se

http://cs.lth.se/pierre_nugues/

Pierre Nugues Language Processing with Perl and Prolog 1 / 25

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Language Technology Chapter 13: Dependency Parsing

Parsing Dependencies

Generate all the pairs:

table
the
to

meal
the

Bring
Which sentence root?

Which head?
meal

Pierre Nugues Language Processing with Perl and Prolog 2 / 25

Language Technology Chapter 13: Dependency Parsing

Talbanken: An Annotated Corpus of Swedish

1 Äktenskapet _ NN NN _ 4 SS
2 och _ ++ ++ _ 3 ++
3 familjen _ NN NN _ 1 CC
4 är _ AV AV _ 0 ROOT
5 en _ EN EN _ 7 DT
6 gammal _ AJ AJ _ 7 AT
7 institution _ NN NN _ 4 SP
8 , _ IK IK _ 7 IK
9 som _ PO PO _ 10 SS
10 funnits _ VV VV _ 7 ET
11 sedan _ PR PR _ 10 TA
12 1800-talet _ NN NN _ 11 PA
13 . _ IP IP _ 4 IP

Pierre Nugues Language Processing with Perl and Prolog 3 / 25

Language Technology Chapter 13: Dependency Parsing

Visualizing the Graph

Using What’s Wrong With My NLP
(https://code.google.com/p/whatswrong/):

Pierre Nugues Language Processing with Perl and Prolog 4 / 25

https://code.google.com/p/whatswrong/

Language Technology Chapter 13: Dependency Parsing

Parser Input

The words and their parts of speech obtained from an earlier step.

1 Äktenskapet _ NN NN _
2 och _ ++ ++ _
3 familjen _ NN NN _
4 är _ AV AV _
5 en _ EN EN _
6 gammal _ AJ AJ _
7 institution _ NN NN _
8 , _ IK IK _
9 som _ PO PO _
10 funnits _ VV VV _
11 sedan _ PR PR _
12 1800-talet _ NN NN _
13 . _ IP IP _

Pierre Nugues Language Processing with Perl and Prolog 5 / 25

Language Technology Chapter 13: Dependency Parsing

Nivre’s Parser

Joakim Nivre designed an efficient dependency parser extending the
shift-reduce algorithm.
He started with Swedish and has reported the best results for this language
and many others.

PP NN VB PN JJ NN HP VB PM PM
På 60-talet målade han djärva tavlor som retade Nikita Chrusjtjov.
(In the-60’s painted he bold pictures which annoyed Nikita Chrustjev.)

His team obtained the best results in the CoNLL 2007 shared task on
dependency parsing.

Pierre Nugues Language Processing with Perl and Prolog 6 / 25

Language Technology Chapter 13: Dependency Parsing

The Parser

The first step is a POS tagging
The parser applies a variation/extension of the shift-reduce algorithm since
dependency grammars have no nonterminal symbols
The transitions are:

Shift, pushes the input token to the stack
Reduce, reduces the token on the top of the stack
Left arc, adds an arc from the next input token to the token on the
top of the stack and reduces it.
Right arc, adds an arc from the token on top of the stack to the next
input token and pushes the input token on the top of the stack.

Pierre Nugues Language Processing with Perl and Prolog 7 / 25

Language Technology Chapter 13: Dependency Parsing

Transitions’ Definition

Actions Parser states Conditions
Initialization 〈nil ,W , /0〉
Termination 〈S ,nil ,A〉
Left-arc 〈n|S ,n′|I ,A〉 → 〈S ,n′|I ,A∪{(n′,n)}〉 @n′′(n′′,n) ∈ A
Right-arc 〈n|S ,n′|I ,A〉 → 〈n′|n|S , I ,A∪{(n,n′)}〉
Reduce 〈n|S , I ,A〉 → 〈S , I ,A〉 ∃n′(n′,n) ∈ A
Shift 〈S ,n|I ,A〉 → 〈n|S , I ,A〉

1 The first condition @n′′(n′′,n) ∈ A, where n′′ is the head and n, the
dependent, is to enforce a unique head.

2 The second condition ∃n′(n′,n) ∈ A, where n′ is the head and n, the
dependent, is to ensure that the graph is connected.

Pierre Nugues Language Processing with Perl and Prolog 8 / 25

Language Technology Chapter 13: Dependency Parsing

Nivre’s Parser in Action

Input W = The waiter brought the meal.
The graph is:

<root> The waiter brought the meal

{the← waiter,waiter← brought,ROOT→ brought, the←meal,

brought→meal},

Let us apply the sequence:

[sh, sh, la, sh, la, ra, sh, la, ra]

Pierre Nugues Language Processing with Perl and Prolog 9 / 25

Language Technology Chapter 13: Dependency Parsing

Nivre’s Parser in Action

[sh, sh, la, sh, la, ra, sh, la, ra]

Trans. Stack Queue Graph
start /0 ROOT the waiter brought the meal {}
sh

ROOT the waiter brought the meal {}
sh

the waiter brought the meal {}
ROOT

la
ROOT waiter brought the meal {the ← waiter}

sh
waiter brought the meal {the ← waiter}
ROOT

la
ROOT brought the meal {the ← waiter, waiter ←

brought}

Pierre Nugues Language Processing with Perl and Prolog 10 / 25

Language Technology Chapter 13: Dependency Parsing

Nivre’s Parser in Action (II)

[sh, sh, la, sh, la, ra, sh, la, ra]

Trans. Stack Queue Graph
ra

brought the meal {the ← waiter, waiter ← brought,
ROOT ROOT → brought}

sh
the meal {the ← waiter, waiter ← brought,

brought ROOT → brought}
ROOT

la
brought meal {the ← waiter, waiter ← brought,
ROOT ROOT → brought, the ← meal}

ra
end meal [] {the ← waiter, waiter ← brought,

brought ROOT → brought, the ← meal,
ROOT brought → meal}

Pierre Nugues Language Processing with Perl and Prolog 11 / 25

Language Technology Chapter 13: Dependency Parsing

Nivre’s Parser in Prolog: Left-Arc

% shift_reduce(+Sentence, -Graph)
shift_reduce(Sentence, Graph) :-

shift_reduce(Sentence, [], [], Graph).

% shift_reduce(+Words, +Stack, +CurGraph, -FinGraph)
shift_reduce([], _, Graph, Graph).
shift_reduce(Words, Stack, Graph, FinalGraph) :-

left_arc(Words, Stack, NewStack, Graph, NewGraph),
write(’left arc’), nl,
shift_reduce(Words, NewStack, NewGraph, FinalGraph).

Pierre Nugues Language Processing with Perl and Prolog 12 / 25

Language Technology Chapter 13: Dependency Parsing

Gold Standard Parsing

Nivre’s parser uses a sequence of actions taken in the set
{la, ra, re, sh}.
We have:

A sequence of actions creates a dependency graph
Given a projective dependency graph, we can find an action sequence
creating this graph. This is gold standard parsing.

Let TOP be the top of the stack and FIRST , the first token of the input
list, and A the dependency graph.

1 if arc(TOP,FIRST) ∈ A, then right-arc;
2 else if arc(FIRST ,TOP) ∈ A, then left-arc;
3 else if ∃k ∈ Stack,arc(FIRST ,k) ∈ A or arc(k ,FIRST) ∈ A, then

reduce;
4 else shift.

Pierre Nugues Language Processing with Perl and Prolog 13 / 25

Language Technology Chapter 13: Dependency Parsing

Parsing a Sentence

When parsing an unknown sentence, we do not know the dependencies yet
The parser will use a “guide” to tell which transition to apply in the set
{la, ra, re, sh}.
The parser will extract a context from its current state, for instance the
part of speech of the top of the stack and the first in the queue, and will
ask the guide.
D-rules are a simply way to implement this

Pierre Nugues Language Processing with Perl and Prolog 14 / 25

Language Technology Chapter 13: Dependency Parsing

Dependency Rules

D-rules are possible relations between a head and a dependent.
They involve part-of-speech, mostly, and words

1. determiner ← noun. 4. noun ← verb.
2. adjective ← noun. 5. preposition ← verb.
3. preposition ← noun. 6. verb ← root.

category : noun
number : N
person : P
case : nominative

←
 category : verb

number : N
person : P



Pierre Nugues Language Processing with Perl and Prolog 15 / 25

Language Technology Chapter 13: Dependency Parsing

Parsing Dependency Rules in Prolog

%drule(Head, Dependent, Function).

drule(noun, determiner, determinative).
drule(noun, adjective, attribute).
drule(verb, noun, subject).
drule(verb, noun, object).

D-Rules may also include a direction, for instance a determiner is always to
the left

%drule(Head, Dependent, Function, Direction).

Pierre Nugues Language Processing with Perl and Prolog 16 / 25

Language Technology Chapter 13: Dependency Parsing

Nivre’s Parser in Prolog: Left-Arc (II)

% left_arc(+WordList, +Stack, -NewStack, +Graph, -NewGraph)

left_arc([w(First, PosF) | _], [w(Top, PosT) | Stack],
Stack, Graph, [d(w(First, PosF),
w(Top, PosT), Function) | Graph]) :-

word(First, FirstPOS),
word(Top, TopPOS),
drule(FirstPOS, TopPOS, Function, left),
\+ member(d(_, w(Top, PosT), _), Graph).

Pierre Nugues Language Processing with Perl and Prolog 17 / 25

Language Technology Chapter 13: Dependency Parsing

Tracing Nivre’s Parser

shift_reduce([w(the, 1), w(waiter, 2), w(brought, 3),
w(the, 4), w(meal, 5)], G).
shift
left arc
shift
left arc
shift
shift
left arc
right arc
G = [d(w(brought, 3), w(meal, 5), object),
d(w(meal, 5), w(the, 4), determinative),
d(w(brought, 3), w(waiter, 2), subject),
d(w(waiter, 2), w(the, 1), determinative)]

Pierre Nugues Language Processing with Perl and Prolog 18 / 25

Language Technology Chapter 13: Dependency Parsing

Using Features

D-rules consider a limited context: the part of speech of the top of the
stack and the first in the queue
We can extend the context:

Extracts more features (attributes), for instance two words in the
stack, three words in the queue
Use them as input to a four-class classifier and determine the next
action

Pierre Nugues Language Processing with Perl and Prolog 19 / 25

Language Technology Chapter 13: Dependency Parsing

Training a Classifier

Gold standard parsing of a manually annotated corpus produces training
data

Stack Queue Stack Queue Trans.
POS(T0) POS(Q0) POS(T0) POS(T−1) POS(Q0) POS(Q+1)
nil ROOT nil nil ROOT DT sh
ROOT DT ROOT nil DT NN sh
DT NN DT ROOT NN VBD la
ROOT NN ROOT nil NN VBD sh
NN VBD NN ROOT VBD DT la
ROOT VBD ROOT nil VBD DT ra
VBD DT VBD ROOT DT NN sh
DT NN DT VBD NN nil la
VBD NN VBD ROOT NN nil ra

Using Talbanken and CoNLL 2006 data, you can train decision trees and
implement a parser.

Pierre Nugues Language Processing with Perl and Prolog 20 / 25

Language Technology Chapter 13: Dependency Parsing

Feature Vectors

You extract one feature (attribute) vector for each parsing action.
The most elementary feature vector consists of two parameters: POS_TOP,
POS_FIRST
Nivre et al. (2006) used from 16 to 30 parameters and support vector
machines.
As machine-learning algorithm, you can use decision trees, perceptron,
logistic regression, or support vector machines.

Pierre Nugues Language Processing with Perl and Prolog 21 / 25

Language Technology Chapter 13: Dependency Parsing

Finding Dependencies using Constraints

Parts of speech Possible governors Possible functions
Determiner noun det
Noun verb object, iobject
Noun prep pcomp
Verb root root
Prep verb, noun mod, loc

Pierre Nugues Language Processing with Perl and Prolog 22 / 25

Language Technology Chapter 13: Dependency Parsing

Tagging

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags nil, root 3, det 4, pcomp 3, mod 3, det 4, pcomp

6, det 1, object 1, loc 6, det 1, object
1, iobject 1, iobject

A second step applies and propagates constraint rules.
Rules for English describe: projectivity – links must not cross –, function
uniqueness – there is only one subject, one object, one indirect object –,
topology

Pierre Nugues Language Processing with Perl and Prolog 23 / 25

Language Technology Chapter 13: Dependency Parsing

Constraints

A determiner has its head to its right-hand side
A subject has its head to its right-hand side when the verb is at the
active form
An object and an indirect object have their head to their left-hand side
(active form)
A prepositional complement has its head to its left-hand side

Words Bring the meal to the table
Position 1 2 3 4 5 6
Part of speech verb det noun prep det noun
Possible tags nil, root 3, det 1, iobject 3, mod 6, det 4, pcomp

1, object 1, loc

Pierre Nugues Language Processing with Perl and Prolog 24 / 25

Language Technology Chapter 13: Dependency Parsing

Evaluation of Dependency Parsing

Dependency parsing: The error count is the number of words that are
assigned a wrong head, here 1/6.
Reference Output

<root> Bring the meal to the table

root

object

det

loc

pcomp

det

<root> Bring the meal to the table

root

object

det loc

pcomp

det

Pierre Nugues Language Processing with Perl and Prolog 25 / 25

	Language Technology
	Chapter 13: Dependency Parsing

