
Language Technology

Language Processing with Perl and Prolog
Chapter 11: Syntactic Formalisms

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se

http://cs.lth.se/pierre_nugues/

Pierre Nugues Language Processing with Perl and Prolog 1 / 42

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Language Technology Chapter 11: Syntactic Formalisms

Syntax

Syntax has been the core of linguistics in the US and elsewhere for many
years
Noam Chomsky, professor at the MIT, has had an overwhelming influence,
sometimes misleading
Syntactic structures (1957) has been a cult book for the past generation of
linguists
Syntax can be divided into two parts:

Formalism – How to represent syntax
Parsing – How to get the representation of a sentence

Pierre Nugues Language Processing with Perl and Prolog 2 / 42

Language Technology Chapter 11: Syntactic Formalisms

Syntactic Formalisms

The two most accepted formalisms use a tree representation:
One is based on the idea of constituents
Another is based on dependencies between words. Trees have
originally been called stemmas

They are generally associated respectively to Chomsky and Tesnière.
Later, constituent grammars evolved into unification grammars

Pierre Nugues Language Processing with Perl and Prolog 3 / 42

Language Technology Chapter 11: Syntactic Formalisms

Constituency

Constituency can be expressed by context-free grammars. They are defined
by

1 A set of designated start symbols, Σ, covering the sentences to parse.
This set can be reduced to a single symbol, such as sentence, or
divided into more symbols: declarative_sentence,
interrogative_sentence.

2 A set of nonterminal symbols enabling the representation of the
syntactic categories. This set includes the sentence and phrase
categories.

3 A set of terminal symbols representing the vocabulary: words of the
lexicon, possibly morphemes.

4 A set of rules, F , where the left-hand-side symbol of the rule is
rewritten in the sequence of symbols of the right-hand side.

Pierre Nugues Language Processing with Perl and Prolog 4 / 42

Language Technology Chapter 11: Syntactic Formalisms

DCG

These grammars can be mapped to DCG rules as for

The boy hit the ball

sentence --> np, vp.
np --> t, n.
vp -- verb, np.
t --> [the].
n --> [man] ; [ball] ; etc.
verb --> [hit] ; [took] ; etc.

Generation of sentences is one of the purposes of grammar according to
Chomsky

Pierre Nugues Language Processing with Perl and Prolog 5 / 42

Language Technology Chapter 11: Syntactic Formalisms

Chomsky Normal Form

In some parsing algorithms, it is necessary to have rules in the Chomsky
normal form (CNF) with two right-hand-side symbols
Non-CNF rules:

lhs --> rhs1, rhs2, rhs3.

can be converted into a CNF equivalent:

lhs --> rhs1, lhs_aux.
lhs_aux --> rhs2, rhs3.

Pierre Nugues Language Processing with Perl and Prolog 6 / 42

Language Technology Chapter 11: Syntactic Formalisms

Transformations

Rearrangement of sentences according to some syntactic relations:
active/passive, declarative/interrogative, etc.
Transformations use rules – transformational rules or T rules –

The boy will hit the ball/the ball will be (en) hit by the boy

T1: np1, aux, v, np2 --->
np2, aux, [be], [en], v, [by], np1

Pierre Nugues Language Processing with Perl and Prolog 7 / 42

Language Technology Chapter 11: Syntactic Formalisms

Transformations

S

VP

NP2Verb

VAux

NP1

S

VP

PP

NP1by

Verb

VenbeAux

NP2

Pierre Nugues Language Processing with Perl and Prolog 8 / 42

Language Technology Chapter 11: Syntactic Formalisms

Syntactic Categories (Penn Treebank)

Categories Description
1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction or 0
7. SBARQ Direct question introduced by wh-word or phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word or phrase
10. VP Verb phrase
11. WHADVP wh-adverb phrase
12. WHNP wh-noun phrase
13. WHPP wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Pierre Nugues Language Processing with Perl and Prolog 9 / 42

Language Technology Chapter 11: Syntactic Formalisms

A Hand-Parsed Sentence using the Penn Treebank
Annotation

Battle-tested industrial managers here always buck up nervous
newcomers with the tale of the first of their countrymen to visit
Mexico, a boatload of samurai warriors blown ashore 375 years
ago.

((S
(NP Battle-tested industrial managers

here)
always
(VP buck

up
(NP nervous newcomers)
(PP with

(NP the tale
(PP of

Pierre Nugues Language Processing with Perl and Prolog 10 / 42

Language Technology Chapter 11: Syntactic Formalisms

A Hand-Parsed Sentence using the Penn Treebank
Annotation

(NP (NP the
(ADJP first

(PP of
(NP their countrymen)))

(S (NP *)
to
(VP visit

(NP Mexico))))
,
(NP (NP a boatload

(PP of
(NP (NP samurai warriors)

(VP-1 blown
ashore

(ADVP (NP 375 years)
ago)))))

(VP-1 *pseudo-attach*))))))))
.)

Pierre Nugues Language Processing with Perl and Prolog 11 / 42

Language Technology Chapter 11: Syntactic Formalisms

Unification-based Grammars

Grammatical features such as case modify the word morphology

Cases Noun groups
Nominative der kleine Ober
Genitive des kleinen Obers
Dative dem kleinen Ober
Accusative den kleinen Ober

The rule

np --> det, adj, n.

outputs ungrammatical phrases as:

?-np(L, []).
[der, kleinen, Ober]; %wrong
[der, kleinen, Obers]; %wrong
[dem, kleine, Obers] %wrong
...

Pierre Nugues Language Processing with Perl and Prolog 12 / 42

Language Technology Chapter 11: Syntactic Formalisms

Representing Features

A possible solution is to use arguments: np(case:C) where the C value is a
member of list [nom, gen, dat, acc]

np(gend:G, num:N, case:C, pers:P, det:D)
np(gend:G, num:N, case:C, pers:P, det:D) -->

det(gend:G, num:N, case:C, pers:P, det:D),
adj(gend:G, num:N, case:C, pers:P, det:D),
n(gend:G, num:N, case:C, pers:P).

Pierre Nugues Language Processing with Perl and Prolog 13 / 42

Language Technology Chapter 11: Syntactic Formalisms

A Small Fragment of German

det(gend:masc, num:sg, case:nom, pers:3, det:def) --> [der].
det(gend:masc, num:sg, case:gen, pers:3, det:def) --> [des].
det(gend:masc, num:sg, case:dat, pers:3, det:def) --> [dem].
det(gend:masc, num:sg, case:acc, pers:3, det:def) --> [den].
adj(gend:masc, num:sg, case:nom, pers:3, det:def) --> [kleine].
adj(gend:masc, num:sg, case:gen, pers:3, det:def) -->

[kleinen].
adj(gend:masc, num:sg, case:dat, pers:3, det:def) -->

[kleinen].
adj(gend:masc, num:sg, case:acc, pers:3, det:def) -->

[kleinen].
n(gend:masc, num:sg, case:nom, pers:3) --> [’Ober’].
n(gend:masc, num:sg, case:gen, pers:3) --> [’Obers’].
n(gend:masc, num:sg, case:dat, pers:3) --> [’Ober’].
n(gend:masc, num:sg, case:acc, pers:3) --> [’Ober’].

Pierre Nugues Language Processing with Perl and Prolog 14 / 42

Language Technology Chapter 11: Syntactic Formalisms

A Unification-based Formalism

Unification-based grammars use a notation close to that of DCGs

NP → DET ADJ N
gend : G
num : N
case : C
pers : P
det : D

gend : G
num : N
case : C
pers : P
det : D

gend : G
num : N
case : C
pers : P
det : D

gend : G
num : N
case : C
pers : P

Pierre Nugues Language Processing with Perl and Prolog 15 / 42

Language Technology Chapter 11: Syntactic Formalisms

Some Rules

S → NP VP num : N
case : nom
pers : P

 [
num : N
pers : P

]

VP → V[
num : N
pers : P

] trans : i
num : N
pers : P

VP → V NP[

num : N
pers : P

] trans : t
num : N
pers : P

 [case : acc]

Pierre Nugues Language Processing with Perl and Prolog 16 / 42

Language Technology Chapter 11: Syntactic Formalisms

Feature Structures are Graphs

Structures can be embedded
f1 : v1

f2 :

 f3 : v3

f4 :

[
f5 : v5
f6 : v6

]

Pronoun → er agreement :

 gender : masc
number : sg
pers : 3

case : nom

Pronoun → ihn agreement :

 gender : masc
number : sg
pers : 3

case : acc

Pierre Nugues Language Processing with Perl and Prolog 17 / 42

Language Technology Chapter 11: Syntactic Formalisms

Feature Structures are Graphs

v1

v3

v5

v6

f1

f2 f3

f4 f5

f6

Pierre Nugues Language Processing with Perl and Prolog 18 / 42

Language Technology Chapter 11: Syntactic Formalisms

Unification-based Formalism

The feature notation is based on the name, not on the position gen : fem
num : pl
case : acc

and
 num : pl

case : acc
gen : fem

are equivalent
Unification is a generalization of Prolog unification
See the course book for the implementation

Pierre Nugues Language Processing with Perl and Prolog 19 / 42

Language Technology Chapter 11: Syntactic Formalisms

Dependency Grammars

Dependency grammars (DG) describe the structure in term of links

The very big cat

<root>

cat

The big

very

Each word has a head or “régissant” except the root of the sentence.
A head has one or more modifiers or dependents:
Cat is the head of big and the; big is the head of very.
DG can be more versatile with a flexible word order language like German,
Russian, or Latin.

Pierre Nugues Language Processing with Perl and Prolog 20 / 42

Language Technology Chapter 11: Syntactic Formalisms

A Sentence Tree – Stemma

The waiter brought the meal

Pierre Nugues Language Processing with Perl and Prolog 21 / 42

Language Technology Chapter 11: Syntactic Formalisms

Properties of Dependency Graphs

Acyclic

w1 w2 w3 w4 w5

Connected
w1 w2 w3 w4 w5

Projective Each pair of words (Dep, Head), directly connected, is only
separated by direct or indirect dependents of Dep or Head

Pierre Nugues Language Processing with Perl and Prolog 22 / 42

Language Technology Chapter 11: Syntactic Formalisms

Nonprojective Graphs (McDonald and Pereira)

w1 w2 w3

<root> John saw a dog yesterday which was a Yorkshire Terrier

Pierre Nugues Language Processing with Perl and Prolog 23 / 42

Language Technology Chapter 11: Syntactic Formalisms

Nonprojective Graphs (Järvinen and Tapanainen)

<root>

like

would do

What you me to ?

Pierre Nugues Language Processing with Perl and Prolog 24 / 42

Language Technology Chapter 11: Syntactic Formalisms

Valence

Tesnière makes a distinction between essential and circumstantial
complements
Essential – or core – complements are for instance subject and objects.
Circumstantial – or noncore – complements are the adjuncts
Valence corresponds to the verb saturation of its essential complements

Pierre Nugues Language Processing with Perl and Prolog 25 / 42

Language Technology Chapter 11: Syntactic Formalisms

Valence Examples

Val. Examples Frames
0 it’s raining raining []
1 he’s sleeping sleeping [subject : he]

2 she read this book read

[
subject : she
object : book

]
3 Elke gave a book to Wolfgang gave

 subject : Elke
object : book
iobject : Wolfgang

4 I moved the car from here to the

street
moved

subject : I
object : car
source : here
destination : street

Pierre Nugues Language Processing with Perl and Prolog 26 / 42

Language Technology Chapter 11: Syntactic Formalisms

Subcategorization Frames

Valence is a model of verb construction. It can be extended to more
specific patterns as in the Oxford Advanced Learner’s Dictionary (OALD).

Verb Complement structure Example
slept None (Intransitive) I slept
bring NP The waiter brought the meal
bring NP + to + NP The waiter brought the meal to the

patron
depend on + NP It depends on the waiter
wait for + NP + to + VP I am waiting for the waiter to bring the

meal
keep VP(ing) He kept working
know that + S The waiter knows that the patron

loves fish

Pierre Nugues Language Processing with Perl and Prolog 27 / 42

Language Technology Chapter 11: Syntactic Formalisms

Subcategorization Frames in German

Verb Complement structure Example
schlafen None (Intransitive) Ich habe geschlafen
bringen NP(Accusative) Der Ober hat eine Speise ge-

bracht
bringen NP(Dative) +

NP(Accusative)
Der Ober hat dem Kunde eine
Speise gebracht

abhängen von + NP(Dative) Es hängt vom Ober ab
warten auf + S Er wartete auf dem Ober, die

Speise zu bringen
fortsetzen NP Er hat die Arbeit fortgesetzt
wissen NP(Final verb) Der Ober weiß, das der Kunde

Fisch liebt

Pierre Nugues Language Processing with Perl and Prolog 28 / 42

Language Technology Chapter 11: Syntactic Formalisms

Dependencies and Grammatical Functions

The dependency structure generally reflects the traditional syntactic
representation
The links can be annotated with grammatical function labels.
In a simple sentence, it corresponds to the subject and the object

The waiter brought the meal

subject

object

Probably a more natural description to tie syntax to semantics

Pierre Nugues Language Processing with Perl and Prolog 29 / 42

Language Technology Chapter 11: Syntactic Formalisms

Dependencies and Functions (II)

Adjuncts form another class of functions that modify the verb
They include prepositional phrases whose head is set arbitrarily to the front
preposition
Adjuncts include adverbs that modify a verb

They played the game in a different way

subject
object

adjunct of manner

Pierre Nugues Language Processing with Perl and Prolog 30 / 42

Language Technology Chapter 11: Syntactic Formalisms

Dependency Parse Tree

Words: <root> Bring the meal to the table
Index: 0 1 2 3 4 5 6

root

object

det

loc

pcomp

det

Word Word Direction Head Head Function
pos. position
1 Bring * Root Main verb
2 the > meal 3 Determiner
3 meal < Bring 1 Object
4 to < Bring 1 Location
5 the > table 6 Determiner
6 table < to 4 Prepositional complement

Pierre Nugues Language Processing with Perl and Prolog 31 / 42

Language Technology Chapter 11: Syntactic Formalisms

Representing Dependencies

D = {< Head(1),Rel(1) >,< Head(2),Rel(2) >,...,< Head(n),Rel(n) >} ,

The representation of Bring the meal to the table:

D = {< 0, root>,< 3,det>,< 1,object>,< 1, loc>,< 6,det>,< 4,
pcomp>},

Words: <root> Bring the meal to the table
Index: 0 1 2 3 4 5 6

root

object

det

loc

pcomp

det

Pierre Nugues Language Processing with Perl and Prolog 32 / 42

Language Technology Chapter 11: Syntactic Formalisms

Annotation: MALT XML

<sentence id="24">
<word id="1" form="Dessutom" postag="ab" head="2"

deprel="ADV"/>
<word id="2" form="höjs" postag="vb.prs.sfo" head="0"

deprel=""/>
<word id="3" form="åldergränsen" postag="nn.utr.sin.def.nom"

head="2" deprel="SUB"/>
<word id="4" form="till" postag="pp" head="2" deprel="ADV"/>
<word id="5" form="18" postag="rg.nom" head="6" deprel="DET"/>
<word id="6" form="år" postag="nn.neu.plu.ind.nom" head="4"

deprel="PR"/>
<word id="7" form="." postag="mad" head="2" deprel="IP"/>
</sentence>

TMALT XML is an extended annotation
Pierre Nugues Language Processing with Perl and Prolog 33 / 42

Language Technology Chapter 11: Syntactic Formalisms

Annotation: CoNLL

The CoNLL shared tasks organize evaluations of machine-learning systems
for natural language processing.
They define formats to share data between participants.

1 Dessutom _ AB AB _ 2 +A _ _
2 höjs _ VV VV _ 0 ROOT _ _
3 åldergränsen _ NN NN _ 2 SS _ _
4 till _ PR PR _ 2 OA _ _
5 18 _ RO RO _ 6 DT _ _
6 år _ NN NN _ 4 PA _ _
7 . _ IP IP _ 2 IP _ _

Pierre Nugues Language Processing with Perl and Prolog 34 / 42

Language Technology Chapter 11: Syntactic Formalisms

Annotation: CoNLL

Name Description
1 ID Token index, starting at 1 for each sentence.
2 FORM Word form or punctuation.
3 LEMMA Lemma or stem.
4 CPOSTAG Part-of-speech tag.
5 POSTAG Fine-grained part-of-speech tag.
6 FEATS Unordered set of morphological features separated by a vertical

bar (|).
7 HEAD Head of the current token, which is either a value of ID or zero

(0) if this is the root.
8 DEPREL Dependency relation to the HEAD.
9 PHEAD Projective head of current token, which is either a value of ID or

zero (0). The dependency structure resulting from the PHEAD
column is guaranteed to be projective, when available in the
corpus.

10 PDEPREL Dependency relation to the PHEAD.

Pierre Nugues Language Processing with Perl and Prolog 35 / 42

Language Technology Chapter 11: Syntactic Formalisms

Visualizing Dependencies

Using What’s Wrong With My NLP
(https://code.google.com/p/whatswrong/):

Pierre Nugues Language Processing with Perl and Prolog 36 / 42

https://code.google.com/p/whatswrong/

Language Technology Chapter 11: Syntactic Formalisms

Function Annotation Tagset (Järvinen and Tapanainen
1997)

Name Description Example
Main functions

main Main element He doesn’t know whether to send a gift
qtag Question tag Let’s play another game, shall we?

Intranuclear links
v-ch Verb chain It may have been being examined
pcomp Prepositional comple-

ment
They played the game
in a different way

phr Verb particle He asked me who would look after the
baby

Pierre Nugues Language Processing with Perl and Prolog 37 / 42

Language Technology Chapter 11: Syntactic Formalisms

Function Annotation Tagset (Järvinen and Tapanainen
1997)

Verb complementation
subj Subject
obj Object I gave him my address
comp Subject complement. It has become marginal
dat Indirect object Pauline gave it to Tom
oc Object complement His friends call him Ted
copred Copredicative We took a swim naked
voc Vocative Play it again, Sam

Determinative functions
qn Quantifier I want more money
det Determiner Other members will join...
neg Negator It is not coffee that I like, but tea

Pierre Nugues Language Processing with Perl and Prolog 38 / 42

Language Technology Chapter 11: Syntactic Formalisms

Function Annotation Tagset (Järvinen and Tapanainen
1997)

Modifiers
attr Attributive nominal Knowing no French, I couldn’t express

my thanks
mod Other postmodifiers The baby, Frances Bean, was. . .

The people on the bus were singing
ad Attributive adverbial She is more popular

Junctives
cc Coordination Two or more cars. . .

Pierre Nugues Language Processing with Perl and Prolog 39 / 42

Language Technology Chapter 11: Syntactic Formalisms

Dependency vs. Constituency

Constituency (most textbooks) is a declining formalism
It cannot properly handle many languages: Swedish, Russian, Czech,
Arabic, etc.
Dependency parsing can handle all these languages as well as English,
German, French, etc.
Dependency parsing has improved considerably over the last 4 years: see
CoNLL 2006 and 2007.
CoNLL 2008 and 2009 extend it to semantic parsing
However, constituency and dependency are (weakly) compatible provided
that we restrict us to projective dependency graphs

Pierre Nugues Language Processing with Perl and Prolog 40 / 42

Language Technology Chapter 11: Syntactic Formalisms

From Constituency to Dependency

It is possible to convert constituent trees into dependency graphs
We need to identify a headword in all the PS rules, here with a star:

s --> np, vp*.
vp --> verb*, np.
np --> det, noun*.

Parsers by Magerman and Collins used this to convert the Penn Treebank
constituent annotation for their dependency parsers
When projective, dependency structures are loosely compatible with
constituent grammars.

Pierre Nugues Language Processing with Perl and Prolog 41 / 42

Language Technology Chapter 11: Syntactic Formalisms

From Constituency to Dependency (II)

A constituent tree with head-marked rules:

S

VP*

NP

Noun*

ball

Det

the

Verb*

hit

NP

Noun*

boy

Det

The

boy

hit

hit

ball

The resulting dependency graph:

The boy hit the ball
Pierre Nugues Language Processing with Perl and Prolog 42 / 42

	Language Technology
	Chapter 11: Syntactic Formalisms

