Language Processing with Perl and Prolog Chapter 5: Counting Words

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Counting Words and Word Sequences

Words have specific contexts of use.
Pairs of words like strong and tea or powerful and computer are not random associations.
Psychological linguistics tells us that it is difficult to make a difference between writer and rider without context
A listener will discard the improbable rider of books and prefer writer of books
A language model is the statistical estimate of a word sequence.
Originally developed for speech recognition
The language model component enables to predict the next word given a sequence of previous words: the writer of books, novels, poetry, etc. and not the writer of hooks, nobles, poultry, ...

Getting the Words from a Text: Tokenization

Arrange a list of characters:
[l, i, s, t, ', o, f, ', c, h, a, r, a, c, t, e, r, s] into words:
[list, of, characters]
Sometimes tricky:

- Dates: 28/02/96
- Numbers: 9,812.345 (English), 9 812,345 (French and German) 9.812,345 (Old fashioned French)
- Abbreviations: km/h, m.p.h.,
- Acronyms: S.N.C.F.

Tokenizers use rules (or regexes) or statistical methods.

Tokenizing in Perl

```
use utf8;
binmode(STDOUT, ":encoding(UTF-8)");
binmode(STDIN, ":encoding(UTF-8)");
$text = <>;
while ($line = <>) {
    $text .= $line;
}
$text =~ tr/a-zåàâäæçéèêëîioôöœßùûüÿA-ZÅÀÂÄEÇÉEEEEZïİÔÖ氏U̇ÛÜŸ
    \prime\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;])/\n$1\n/g;
$text =~ s/\n+/\n/g;
```

print \$text;

Improving Tokenization

The tokenization algorithm is word-based and defines a content It does not work on nomenclatures such as Item \#N23-SW32A, dates, or numbers
Instead it is possible to improve it using a boundary-based strategy with spaces (using for instance \s) and punctuation
But punctuation signs like commas, dots, or dashes can also be parts of tokens
Possible improvements using microgrammars
At some point, need of a dictionary:
Can't \rightarrow can n't, we'll \rightarrow we 'll
J'aime \rightarrow j' aime but aujourd'hui

Sentence Segmentation

As for tokenization, segmenters use either rules (or regexes) or statistical methods.
Grefenstette and Tapanainen (1994) used the Brown corpus and experimented increasingly complex rules
Most simple rule: a period corresponds to a sentence boundary: 93.20\% correctly segmented
Recognizing numbers:

$$
\begin{array}{ll}
{[0-9]+(\backslash /[0-9]+)+} & \text { Fractions, dates } \\
([+\backslash-]) ?[0-9]+(\backslash .) ?[0-9] * \% & \text { Percent } \\
([0-9]+, ?)+(\backslash .[0-9]+\mid[0-9]+) * & \text { Decimal numbers }
\end{array}
$$

93.78\% correctly segmented

Abbreviations

Common patterns (Grefenstette and Tapanainen 1994):

- single capitals: A., B., C.,
- letters and periods: U.S. i.e. m.p.h.,
- capital letter followed by a sequence of consonants: Mr. St. Assn.

Regex	Correct	Errors	Full stop
$[A-Z a-z] \backslash$.	1,327	52	14
$[A-Z a-z] \backslash .([A-Z a-z 0-9] \backslash)+$.	570	0	66
$[A-Z][b c d f g h j-n p-t v x z]+\backslash$.	1,938	44	26
Totals	3,835	96	106

Correct segmentation increases to 97.66% With an abbreviation dictionary to 99.07%

N-Grams

The types are the distinct words of a text while the tokens are all the words or symbols.
The phrases from Nineteen Eighty-Four
War is peace
Freedom is slavery
Ignorance is strength
have 9 tokens and 7 types.
Unigrams are single words
Bigrams are sequences of two words
Trigrams are sequences of three words

Trigrams

Word	Rank	More likely alternatives
We	9	The This One Two A Three Please In
need	7	are will the would also do
to	1	
resolve	85	have know do. . .
all	9	the this these problems. . .
of	2	the
the	1	
important	657	document question first. . .
issues	14	thing point to. .
within	74	to of and in that. .
the	1	
next	2	company
two	5	page exhibit meeting day
days	5	weeks years pages months

Counting Words in Perl: Useful Features

Useful instructions and features: split, sort, and associative arrays (hash tables, dictionaries):

```
@words = split(/\n/, $text);
```

\$wordcount\{"a"\} = 21;
\$wordcount\{"And"\} = 10;
\$wordcount\{"the"\} = 18;
keys \%wordcount
sort array

Counting Words in Perl

```
use utf8;
binmode(STDOUT, ":encoding(UTF-8)");
binmode(STDIN, ":encoding(UTF-8)");
$text = <>;
while ($line = <>) {
    $text .= $line;
}
```



```
    \prime\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;])/\n$1\n/g;
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);

\section*{Counting Words in Perl (Cont'd)}
```

for (\$i = 0; \$i <= \$\#words; $i++) {
 if (!exists($frequency{$words[$i]})) {
$frequency{$words[\$i]} = 1;
} else {
$frequency{$words[\$i]}++;
}
}
foreach $word (sort keys %frequency){
 print "$frequency{\$word} \$word\n";
}

```

\section*{Counting Bigrams in Perl}
```

@words = split(/\n/, $text);
for ($i = 0; \$i < \$\#words; \$i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i + 1];
}
for (\$i = 0; \$i < \$\#words; $i++) {
 if (!exists($frequency_bigrams{$bigrams[$i]})) {
$frequency_bigrams{$bigrams[\$i]} = 1;
} else {
$frequency_bigrams{$bigrams[\$i]}++;
}
}
foreach $bigram (sort keys %frequency_bigrams){
 print "$frequency_bigrams{\$bigram} \$bigram \n";
}

```

\section*{Probabilistic Models of a Word Sequence}
\[
\begin{aligned}
P(S) & =P\left(w_{1}, \ldots, w_{n}\right) \\
& =P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right) \ldots P\left(w_{n} \mid w_{1}, \ldots, w_{n-1}\right), \\
& =\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right) .
\end{aligned}
\]

The probability \(P\) (It was a bright cold day in April) from Nineteen Eighty-Four corresponds to It to begin the sentence, then was knowing that we have It before, then a knowing that we have It was before, and so on until the end of the sentence.
\[
\begin{aligned}
P(S)= & P(\mid t) \times P(\text { was } \mid I t) \times P(a \mid I t, \text { was }) \times P(\text { bright } \mid I t, \text { was, a }) \times \ldots \\
& \times P(\text { April } \mid / t, \text { was }, \text { a, bright }, \ldots, \text { in }) .
\end{aligned}
\]

\section*{Approximations}

Bigrams:
\[
P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right),
\]

Trigrams:
\[
P\left(w_{i} \mid w_{1}, w_{2}, \ldots, w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-2}, w_{i-1}\right) .
\]

Using a trigram language model, \(P(S)\) is approximated as:
\[
\begin{aligned}
P(S) \approx & P(I t) \times P(\text { was } \mid I t) \times P(a \mid I t, \text { was }) \times P(\text { bright } \mid \text { was, } a) \times \ldots \\
& \times P(\text { April } \mid \text { day }, \text { in }) .
\end{aligned}
\]

\section*{Maximum Likelihood Estimate}

Bigrams:
\[
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1}, w_{i}\right)}{\sum_{w} C\left(w_{i-1}, w\right)}=\frac{C\left(w_{i-1}, w_{i}\right)}{C\left(w_{i-1}\right)} .
\]

Trigrams:
\[
P_{M L E}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)} .
\]

\section*{Conditional Probabilities}

A common mistake in computing the conditional probability \(P\left(w_{i} \mid w_{i-1}\right)\) is to use
\[
\frac{C\left(w_{i-1}, w_{i}\right)}{\# \text { bigrams }} .
\]

This is not correct. This formula corresponds to \(P\left(w_{i-1}, w_{i}\right)\). The correct estimation is
\[
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1}, w_{i}\right)}{\sum_{w} C\left(w_{i-1}, w\right)}=\frac{C\left(w_{i-1}, w_{i}\right)}{C\left(w_{i-1}\right)} .
\]

Proof:
\[
P\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right)=\frac{C\left(w_{1}\right)}{\# w o r d s} \times \frac{C\left(w_{1}, w_{2}\right)}{C\left(w_{1}\right)}=\frac{C\left(w_{1}, w_{2}\right)}{\# w o r d s}
\]

\section*{Training the Model}

The model is trained on a part of the corpus: the training set It is tested on a different part: the test set
The vocabulary can be derived from the corpus, for instance the 20,000
most frequent words, or from a lexicon
It can be closed or open
A closed vocabulary does not accept any new word
An open vocabulary maps the new words, either in the training or test sets, to a specific symbol, <UNK>

\section*{Probability of a Sentence: Unigrams}
<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>
\begin{tabular}{lrrr}
\hline\(w_{i}\) & \(C\left(w_{i}\right)\) & \#words & \(P_{\text {MLE }}\left(w_{i}\right)\) \\
\hline\(\langle s>\) & 7072 & - & \\
a & 2482 & 115212 & 0.023 \\
good & 53 & 115212 & 0.00049 \\
deal & 5 & 115212 & \(4.6210^{-5}\) \\
of & 3310 & 115212 & 0.031 \\
the & 6248 & 115212 & 0.058 \\
literature & 7 & 115212 & \(6.4710^{-5}\) \\
of & 3310 & 115212 & 0.031 \\
the & 6248 & 115212 & 0.058 \\
past & 99 & 115212 & 0.00092 \\
was & 2211 & 115212 & 0.020 \\
indeed & 17 & 115212 & 0.00016 \\
already & 64 & 115212 & 0.00059 \\
being & 80 & 115212 & 0.00074 \\
transformed & 1 & 115212 & \(9.2510-6\) \\
in & 1759 & 115212 & 0.016 \\
this & 264 & 115212 & 0.0024 \\
way & 122 & 115212 & 0.0011 \\
</s> & 7072 & 115212 & 0.065 \\
\hline
\end{tabular}

\section*{Probability of a Sentence: Bigrams}
<s> A good deal of the literature of the past was, indeed, already being transformed in this way </s>
\begin{tabular}{lrrr}
\hline\(w_{i-1}, w_{i}\) & \(C\left(w_{i-1}, w_{i}\right)\) & \(C\left(w_{i-1}\right)\) & \(P_{\text {MLE }}\left(w_{i} \mid w_{i-1}\right)\) \\
\hline <s> a & 133 & 7072 & 0.019 \\
a good & 14 & 2482 & 0.006 \\
good deal & 0 & 53 & 0.0 \\
deal of & 1 & 5 & 0.2 \\
of the & 742 & 3310 & 0.224 \\
the literature & 1 & 6248 & 0.0002 \\
literature of & 3 & 7 & 0.429 \\
of the & 742 & 3310 & 0.224 \\
the past & 70 & 6248 & 0.011 \\
past was & 4 & 99 & 0.040 \\
was indeed & 0 & 2211 & 0.0 \\
indeed already & 0 & 17 & 0.0 \\
already being & 0 & 64 & 0.0 \\
being transformed & 0 & 80 & 0.0 \\
transformed in & 0 & 1 & 0.0 \\
in this & 14 & 1759 & 0.008 \\
this way & 3 & 264 & 0.011 \\
way </s> & 18 & 122 & 0.148 \\
\hline
\end{tabular}

\section*{Sparse Data}

Given a vocabulary of 20,000 types, the potential number of bigrams is \(20,000^{2}=400,000,000\)
With trigrams \(20,000^{3}=8,000,000,000,000\)
Methods:
- Laplace: add one to all counts
- Linear interpolation:
\[
\begin{aligned}
P_{\text {Dellnterpolation }}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)= & \lambda_{1} P_{M L E}\left(w_{n} \mid w_{n-2} w_{n-1}\right)+ \\
& \lambda_{2} P_{M L E}\left(w_{n} \mid w_{n-1}\right)+\lambda_{3} P_{M L E}\left(w_{n}\right),
\end{aligned}
\]
- Good-Turing: The discount factor is variable and depends on the number of times a n -gram has occurred in the corpus.
- Back-off

\section*{Laplace's Rule}
\[
P_{\text {Laplace }}\left(w_{i+1} \mid w_{i}\right)=\frac{C\left(w_{i}, w_{i+1}\right)+1}{\sum_{w}\left(C\left(w_{i}, w\right)+1\right)}=\frac{C\left(w_{i}, w_{i+1}\right)+1}{C\left(w_{i}\right)+C a r d(V)},
\]
\begin{tabular}{lrrr}
\hline\(w_{i}, w_{i+1}\) & \(C\left(w_{i}, w_{i+\mathbf{1}}\right)+1\) & \(C\left(w_{i}\right)+\operatorname{Card}(V)\) & \(P_{\text {Lap }}\left(w_{i+\mathbf{1}} \mid w_{i}\right)\) \\
\hline <s> a & \(133+1\) & \(7072+8635\) & 0.0085 \\
a good & \(14+1\) & \(2482+8635\) & 0.0013 \\
good deal & \(0+1\) & \(53+8635\) & 0.00012 \\
deal of & \(1+1\) & \(5+8635\) & 0.00023 \\
of the & \(742+1\) & \(3310+8635\) & 0.062 \\
the literature & \(1+1\) & \(6248+8635\) & 0.00013 \\
literature of & \(3+1\) & \(7+8635\) & 0.00046 \\
of the & \(742+1\) & \(3310+8635\) & 0.062 \\
the past & \(70+1\) & \(6248+8635\) & 0.0048 \\
past was & \(4+1\) & \(99+8635\) & 0.00057 \\
was indeed & \(0+1\) & \(2211+8635\) & 0.000092 \\
indeed already & \(0+1\) & \(17+8635\) & 0.00012 \\
already being & \(0+1\) & \(64+8635\) & 0.00011 \\
being transformed & \(0+1\) & \(80+8635\) & 0.00011 \\
transformed in & \(0+1\) & \(1+8635\) & 0.00012 \\
in this & \(14+1\) & \(1759+8635\) & 0.0014 \\
this way & \(3+1\) & \(264+8635\) & 0.00045 \\
way </s> & \(18+1\) & \(122+8635\) & 0.0022 \\
\hline
\end{tabular}

\section*{Good-Turing}

Laplace's rule shifts an enormous mass of probability to very unlikely bigrams. Good-Turing's estimation is more effective
Let's denote \(N_{c}\) the number of \(n\)-grams that occurred exactly \(c\) times in the corpus.
\(N_{0}\) is the number of unseen n-grams, \(N_{1}\) the number of \(n\)-grams seen once, \(N_{2}\) the number of \(n\)-grams seen twice The frequency of \(n\)-grams occurring \(c\) times is re-estimated as:
\[
c *=(c+1) \frac{E\left(N_{c+1}\right)}{E\left(N_{c}\right)},
\]

Unseen n-grams: \(c *=\frac{N_{1}}{N_{0}}\) and \(N\)-grams seen once: \(c *=\frac{2 N_{2}}{N_{1}}\).

\section*{Good-Turing for Nineteen eighty-four}

Nineteen eighty-four contains 37,365 unique bigrams and 5,820 bigram seen twice.
Its vocabulary of 8,635 words generates \(86352^{2}=74,563,225\) bigrams whose \(74,513,701\) are unseen.
New counts:
- Unseen bigrams: \(\frac{37,365}{74,513,701}=0.0005\).
- Unique bigrams: \(2 \times \frac{5820}{37,365}=0.31\).
- Etc.
\begin{tabular}{lrr||lrr}
\hline Freq. of occ. & \(N_{c}\) & \(c *\) & Freq. of occ. & \(N_{c}\) & \(c *\) \\
\hline 0 & \(74,513,701\) & 0.0005 & 5 & 719 & 3.91 \\
1 & 37,365 & 0.31 & 6 & 468 & 4.94 \\
2 & 5,820 & 1.09 & 7 & 330 & 6.06 \\
3 & 2,111 & 2.02 & 8 & 250 & 6 \\
4 & 1,067 & 3.37 & 9 & 179 & 8
\end{tabular}

\section*{Backoff}

If there is no bigram, then use unigrams:
\[
\begin{gathered}
P_{\text {Backoff }}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\tilde{P}\left(w_{i} \mid w_{i-1}\right), & \text { if } C\left(w_{i-1}, w_{i}\right) \neq 0, \\
\alpha P\left(w_{i}\right), & \text { otherwise }\end{cases} \\
P_{\text {Backoff }}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}P_{\mathrm{MLE}}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1}, w_{i}\right)}{C\left(w_{i-1}\right)}, & \text { if } C\left(w_{i-1}, w_{i}\right) \neq 0, \\
P_{\mathrm{MLE}}\left(w_{i}\right)=\frac{C\left(w_{i}\right)}{\# \text { words }}, & \text { otherwise. }\end{cases}
\end{gathered}
\]


\section*{Backoff: Example}
\begin{tabular}{lrrr}
\hline\(w_{i-1}, w_{i}\) & \(C\left(w_{i-\mathbf{1}}, w_{i}\right)\) & \(C\left(w_{i}\right)\) & \(P_{\text {Backoff }}\left(w_{i} \mid w_{i-\mathbf{1}}\right)\) \\
\hline <s> & & & 7072 \\
<s> a & 133 & 2482 & 0.019 \\
a good & 14 & 53 & 0.006 \\
good deal & 0 & backoff & 5 \\
deal of & 1 & & 3310 \\
of the & 742 & 6248 & \(4.6210^{-5}\) \\
the literature & 1 & 7 & 0.2 \\
literature of & 3 & 3310 & 0.224 \\
of the & 742 & 6248 & 0.00016 \\
the past & 70 & 99 & 0.429 \\
past was & 4 & & 0.224 \\
was indeed & 0 & backoff & 2211 \\
indeed already & 0 & backoff & 64 \\
already being & 0 & backoff & 80 \\
being transformed & 0 & backoff & 1 \\
transformed in & 0 & backoff & 1759 \\
in this & 14 & & 0.011 \\
this way & 3 & 264 & 0.040 \\
way </s> & 18 & & 0.00016 \\
\hline
\end{tabular}

The figures we obtain are not probabilities. We can use the Good-Turing technique to discount the bigrams and then scale the unigram probabities This is the Katz backoff.

\section*{Quality of a Language Model}

Per word probability of a word sequence: \(H(L)=-\frac{1}{n} \log _{2} P\left(w_{1}, \ldots, w_{n}\right)\). Entropy rate: \(H_{\text {rate }}=-\frac{1}{n} \sum_{w_{1}, \ldots, w_{n} \in L} p\left(w_{1}, \ldots, w_{n}\right) \log _{2} p\left(w_{1}, \ldots, w_{n}\right)\),
Cross entropy:
\[
H(p, m)=-\frac{1}{n} \sum_{w_{1}, \ldots, w_{n} \in L} p\left(w_{1}, \ldots, w_{n}\right) \log _{2} m\left(w_{1}, \ldots, w_{n}\right) .
\]

We have:
\[
\begin{aligned}
H(p, m) & =\lim _{n \rightarrow \infty}-\frac{1}{n} \sum_{w_{1}, \ldots, w_{n} \in L} p\left(w_{1}, \ldots, w_{n}\right) \log _{2} m\left(w_{1}, \ldots, w_{n}\right), \\
& =\lim _{n \rightarrow \infty}-\frac{1}{n} \log _{2} m\left(w_{1}, \ldots, w_{n}\right) .
\end{aligned}
\]

We compute the cross entropy on the complete word sequence of a test set, governed by \(p\), using a bigram or trigram model, \(m\), from a training set. Perplexity:
\[
P P(p, m)=2^{H(p, m)} .
\]

\section*{Other Statistical Formulas}
- Mutual information (The strength of an association):
\[
I\left(w_{i}, w_{j}\right)=\log _{2} \frac{P\left(w_{i}, w_{j}\right)}{P\left(w_{i}\right) P\left(w_{j}\right)} \approx \log _{2} \frac{N \cdot C\left(w_{i}, w_{j}\right)}{C\left(w_{i}\right) C\left(w_{j}\right)} .
\]
- T-score (The confidence of an association):
\[
\begin{aligned}
t\left(w_{i}, w_{j}\right) & =\frac{\operatorname{mean}\left(P\left(w_{i}, w_{j}\right)\right)-\operatorname{mean}\left(P\left(w_{i}\right)\right) \operatorname{mean}\left(P\left(w_{j}\right)\right)}{\sqrt{\sigma^{2}\left(P\left(w_{i}, w_{j}\right)\right)+\sigma^{2}\left(P\left(w_{i}\right) P\left(w_{j}\right)\right)}}, \\
& \approx \frac{C\left(w_{i}, w_{j}\right)-\frac{1}{N} C\left(w_{i}\right) C\left(w_{j}\right)}{\sqrt{C\left(w_{i}, w_{j}\right)}} .
\end{aligned}
\]

\section*{T-Scores with Word set}
\begin{tabular}{lrcr}
\hline Word & Frequency & Bigram set + word & t-score \\
\hline up & 134,882 & 5512 & 67.980 \\
a & \(1,228,514\) & 7296 & 35.839 \\
to & \(1,375,856\) & 7688 & 33.592 \\
off & 52,036 & 888 & 23.780 \\
out & 12,3831 & 1252 & 23.320
\end{tabular}

Source: Bank of English

\section*{Mutual Information with Word surgery}
\begin{tabular}{lrcr}
\hline Word & Frequency & Bigram word + surgery & Mutual info \\
\hline arthroscopic & 3 & 3 & 11.822 \\
pioneeing & 3 & 3 & 11.822 \\
reconstructive & 14 & 11 & 11.474 \\
refractive & 6 & 4 & 11.237 \\
rhinoplasty & 5 & 3 & 11.085 \\
\hline
\end{tabular}

Source: Bank of English

\section*{Mutual Information and T-Scores in Perl}
```

@words = split(/\n/, $text);
for ($i = 0; \$i < \$\#words; \$i++) {
$bigrams[$i] = $words[$i] . " " . $words[$i + 1];
}
for (\$i = 0; \$i <= \$\#words; \$i++) {
$frequency{$words[$i]}++;
}
for ($i = 0; \$i < \$\#words; \$i++) {
$frequency_bigrams{$bigrams[\$i]}++;
}

```

\section*{Mutual Information in Perl}
```

for (\$i = 0; \$i < \$\#words; \$i++) {
$mutual_info{$bigrams[$i]} = log(($\#words + 1) *
$frequency_bigrams{$bigrams[$i]}/
 ($frequency{$words[$i]} * $frequency{$words[\$i + 1]}))/
log(2);
}
foreach \$bigram (keys %mutual_info){
@bigram_array = split(/ /, \$bigram);
print $mutual_info{$bigram}, " ", \$bigram, "\t",
$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";
}

T-Scores in Perl

```
for ($i = 0; $i < $#words; $i++) {
    $t_scores{$bigrams[$i]} = ($frequency_bigrams{$bigrams[$i]}
        - $frequency{$words[$i]} *
        $frequency{$words[$i + 1]}/($#words + 1))/
        sqrt($frequency_bigrams{$bigrams[$i]});
}
```

foreach \$bigram (keys \%t_scores) \{
@bigram_array = split(/ /, \$bigram);
print \$t_scores\{\$bigram\}, " ", \$bigram, "\t",
\$frequency_bigrams\{\$bigram\}, "\t",
\$frequency\{\$bigram_array[0]\}, "\t",
\$frequency\{\$bigram_array[1]\}, "\n";
\}

Information Retrieval: The Vector Space Model

The vector space model represents a document in a space of words.

Documents $w_{1} \quad w_{2} \quad w_{3} \quad \ldots \quad w_{m}$

\backslash Words

D_{1}	$C\left(w_{1}, D_{1}\right)$	$C\left(w_{2}, D_{1}\right)$	$C\left(w_{3}, D_{1}\right)$	\ldots	$C\left(w_{m}, D_{1}\right)$
D_{2}	$C\left(w_{1}, D_{2}\right)$	$C\left(w_{2}, D_{2}\right)$	$C\left(w_{3}, D_{2}\right)$	\ldots	$C\left(w_{m}, D_{2}\right)$
\ldots					
D_{n}	$C\left(w_{1}, D_{1} n\right)$	$C\left(w_{2}, D_{n}\right)$	$C\left(w_{3}, D_{n}\right)$	\ldots	$C\left(w_{m}, D_{n}\right)$

It was created for information retrieval to compute the similarity of two documents or to match a document and a query.
We compute the similarity of two documents through their dot product.

The Vector Space Model: Example

A collection of two documents D1 and D2:
D1: Chrysler plans new investments in Latin America.
D2: Chrysler plans major investments in Mexico.
The vectors representing the two documents:

D.	america	chrysler	in	investments	latin	major	mexico	new	plans
1	1	1	1	1	1	0	0	1	1
2	0	1	1	1	0	1	1	0	1

The vector space model represents documents as bags of words (BOW) that do not take the word order into account. The dot product is $\overrightarrow{D 1} \cdot \overrightarrow{D 2}=0+1+1+1+0+0+0+0+1=4$ Their cosine is $\frac{\vec{D} 1 \cdot \vec{D} 2}{\|\vec{D} 1||\cdot| \vec{D} 2 \|}=\frac{4}{\sqrt{7} \cdot \sqrt{6}}=0.62$

Giving a Weight

Word clouds give visual weights to words

Image: Courtesy of Jonas Wisbrant

$T F \times I D F$

The frequency alone might be misleading
Document coordinates are in fact $t f \times i d f$: Term frequency by inverted document frequency.
Term frequency $t f_{i, j}$: frequency of term j in document i
Inverted document frequency: $i d f_{j}=\log \left(\frac{N}{n_{j}}\right)$

Document Similarity

Documents are vectors where coordinates could be the count of each word: $\vec{d}=\left(C\left(w_{1}\right), C\left(w_{2}\right), C\left(w_{3}\right), \ldots, C\left(w_{n}\right)\right)$
The similarity between two documents or a query and a document is given by their cosine:

$$
\cos (\vec{q}, \vec{d})=\frac{\sum_{i=1}^{n} q_{i} d_{i}}{\sqrt{\sum_{i=1}^{n} q_{i}^{2}} \sqrt{\sum_{i=1}^{n} d_{i}^{2}}}
$$

Posting Lists

Many websites, such as Wikipedia, index their texts using an inverted index. Each word in the dictionary is linked to a posting list that gives all the documents where this word occurs and its positions in a document.

Words	Posting lists
America	$(\mathrm{D} 1,7)$
Chrysler	$(\mathrm{D} 1,1) \rightarrow(\mathrm{D} 2,1)$
in	$(\mathrm{D} 1,5) \rightarrow(\mathrm{D} 2,5)$
investments	$(\mathrm{D} 1,4) \rightarrow(\mathrm{D} 2,4)$
Latin	$(\mathrm{D} 1,6)$
major	$(\mathrm{D} 2,3)$
Mexico	$(\mathrm{D} 2,6)$
new	$(\mathrm{D} 1,3)$
plans	$(\mathrm{D} 1,2) \rightarrow(\mathrm{D} 2,2)$

Lucene is a high quality open-source indexer.
(http://lucene.apache.org/)

Inverted Index (Source Apple)

