# Language Processing with Perl and Prolog Chapter 1: An Overview of Language Processing

### **Pierre Nugues**

Lund University Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre\_nugues/



**Pierre Nugues** 

# Applications of Language Processing

- Spelling and grammatical checkers: *MS Word*, e-mail programs, etc.
- Text indexing and information retrieval on the Internet: *Google, Microsoft Bing, Yahoo*, or software like *Apache Lucene*
- Translation: Google Translate, SYSTRAN
- Spoken interaction: Apple Siri, Google Now, *Tellme.com*, or *SJ* (trains in Sweden)
- Speech dictation of letters or reports: IBM ViaVoice, Windows Vista

# Applications of Language Processing (ctn'd)

- Direct translation from spoken English to spoken Swedish in a restricted domain: *SRI* and *SICS*
- Voice control of domestic devices such as tape recorders: *Philips* or disc changers: *MS Persona*
- Conversational agents able to dialogue and to plan: TRAINS
- Spoken navigation in virtual worlds: Ulysse, Higgins
- Generation of 3D scenes from text: Carsim
- Question answering: IBM Watson and Jeopardy!

# Linguistics Layers

- Sounds
- Phonemes
- Words and morphology
- Syntax and functions
- Semantics
- Dialogue



### Sounds and Phonemes





### Lexicon and Parts of Speech

The big cat ate the gray mouse

The/article big/adjective cat/noun ate/verb the/article gray/adjective mouse/noun Le/article gros/adjectif chat/nom mange/verbe la/article souris/nom grise/adjectif Die/Artikel große/Adjektiv Katze/Substantiv ißt/Verb die/Artikel graue/Adjektiv Maus/Substantiv



| Word       | Root form                                  |
|------------|--------------------------------------------|
| worked     | <i>to work</i> + verb + preterit           |
| travaillé  | <i>travailler</i> + verb + past participle |
| gearbeitet | <i>arbeiten</i> + verb + past participle   |



# Syntactic Tree



# Syntax: A Classical View

### A graph of dependencies and functions





Language Processing wit Perl and Prolo

# Semantics

As opposed to syntax:

- Colorless green ideas sleep furiously.
- **2** \*Furiously sleep ideas green colorless.

Determining the logical form:

| Sentence                 | Logical representation               |
|--------------------------|--------------------------------------|
| Frank is writing notes   | writing(Frank, notes).               |
| François écrit des notes | écrit(François, notes).              |
| Franz schreibt Notizen   | <pre>schreibt(Franz, Notizen).</pre> |



# Lexical Semantics

#### Word senses:

- Inote (noun) short piece of writing;
- onte (noun) a single sound at a particular level;
- **o** note (*noun*) a piece of paper money;
- note (verb) to take notice of;
- **o** note (*noun*) of note: of importance.

## Reference



Many analyses are ambiguous. It makes language processing difficult. Ambiguity occurs in any layer: speech recognition, part-of-speech tagging, parsing, etc.

Example of an ambiguous phonetic transcription:

The boys eat the sandwiches

That may correspond to:

The boy seat the sandwiches; the boy seat this and which is; the buoys eat the sand which is



# Models and Tools

Linguistics has produced an impressive set of theories and models Language processing requires significant resources Models and tools have matured. Resources are available. Tools involve notably finite-state automata, regular expressions, logic, statistics, and machine learning.



Language Technology

Chapter 1: An Overview of Language Processing

### The Carsim System: A Text-to-Scene Converter

| Texts                                                                                                                                                                                                                                                             | XML Templates                                                                                                                   | 3D Animation |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|
| Véhicule B venant<br>de ma gauche, je<br>me trouve dans le<br>carrefour, à faible<br>vitesse environ 40<br>km/h, quand le<br>véhicule B, percute<br>mon véhicule, et me<br>refuse la priorité à<br>droite. Le premier<br>choc atteint mon aile<br>arrière gauche, | <pre>// Static Objects STATIC [ ROAD TREE ] // Dynamic Objects DYNAMIC [ VEHICLE [ ID = vehicule_b; INITDIRECTION = east;</pre> |              |
| $\Longrightarrow$ NLP en                                                                                                                                                                                                                                          | gine Java 3D animation pr                                                                                                       | rogram       |

# Dialogue: The Persona Project from Microsoft Research

### A conversation with Peedy

| Turn   | Utterance                                                     |
|--------|---------------------------------------------------------------|
|        | [Peedy is asleep on his perch]                                |
| User:  | Good morning, Peedy.                                          |
|        | [Peedy rouses]                                                |
| Peedy: | Good morning.                                                 |
| User:  | Let's do a demo.                                              |
|        | [Peedy stands up, smiles]                                     |
| Peedy: | Your wish is my command, what would you like to hear?         |
| User:  | What have you got by Bonnie Raitt?                            |
|        | [Peedy waves in a stream of notes, and grabs one as they rush |
|        | by.]                                                          |
| Peedy: | I have "The Bonnie Raitt Collection" from 1990.               |
| User:  | Pick something from that                                      |
| Peedy: | How about "Angel from Montgomery"?                            |
| ,      | · · · · · · · · · · · · · · · · · · ·                         |

# Dialogue: The Persona Project from Microsoft Research

| User:  | Sounds good.                              |
|--------|-------------------------------------------|
|        | [Peedy drops note on pile]                |
| Peedy: | OK.                                       |
| User:  | Play some rock after that.                |
|        | [Peedy scans the notes again, selects one |
| Peedy: | How about "Fools in love"?                |
| User:  | Who wrote that?                           |
|        | [Peedy cups one wing to his 'ear']        |
| Peedy: | Huh?                                      |
| User:  | Who wrote that?                           |
|        | [Peedy looks up, scrunches his brow]      |
| Peedy: | Joe Jackson                               |
| User:  | Fine.                                     |
|        | [Drops note on pile]                      |

17 / 20

### Persona System Architecture



**Pierre Nugues** 

Language Processing with Perl and Prolog

<u>مەرەت مەرەب مە</u>

Language Processing with Perl and Prolog

## **IBM** Watson

• IBM Watson: A system that can answer questions better than any human

• Video:

https://www.youtube.com/
watch?v=WFR3lOm\_xhE



- IBM Watson builds on the extraction of knowledge from masses of texts: Wikipedia, archive of the New York Times, etc.
- Bottom line: Text is the repository of human knowledge

Language Technology

Chapter 1: An Overview of Language Processing

# **IBM Watson:** Simplified Architecture



classification: Syntactic parsing, entity recognition, answer classification Document retrieval. Extraction and ranking of passages: Indexing, vector space model. Extraction and ranking of answers: Answer parsing, entity recognition

