2

Corpus Processing Tools

2.1 Corpora

A corpus, plural corpora, is a collection of texts or speeches! in an electronic
machine-readable format. A few years ago, large electronipora of more than
a million of words were rare, expensive, or simply not aVa#a At present, huge
guantities of texts are accessible in many languages of ¢hkelwl hey can easily be
collected from a variety of sources, most notably the Welernelsorpora of hundreds
of millions of words are within the reach of most computaibinguists.

2.1.1 Types of Corpora

Some corpora focus on specific genres, law, science, novals broadcasts, tran-
scriptions of telephone calls, or conversations. Othgrotgather a wider variety of

running texts. Texts collected from a unique source, say fsoientific magazines,
will probably be slanted toward some specific words that dcappear in everyday
life. Table 2.1 compares the most frequent words in the béd&@emesis and in a col-

lection of contemporary running texts. It gives an exampkuch a discrepancy. The
choice of documents to include in a corpus must then be vaénisdrvey compre-

hensively and accurately a language usage. This procesfeisad to as balancing a
corpus.

Balancing a corpus is a difficult and costly task. It requaeecting data from a
wide range of sources: fiction, newspapers, technical, apdlgr literature. Bal-
anced corpora extend to spoken data. The Linguistic Datass@taom from the
University of Pennsylvania and The European Language RessuAssociation
(ELRA), among other organizations, distribute written amibken corpus collec-
tions. They feature samples of magazines, laws, parakéd ie English, French,
German, Spanish, Chinese, telephone calls, radio bro@dets

In addition to raw texts, some corpora are annotated. Eadheafwords is la-
beled with a linguistic tag such as a part of speech or a sétneategory. The an-
notation is done either manually or semiautomatically.Kemocorpora contain the

24 2 Corpus Processing Tools

Table 2.1.List of the most frequent words in present texts and in theklmfdGenesis. After
Crystal (1997).

English French German

Most frequent words in a collection the de der

of contemporary running texts of le (article) die
to la (article) und
in et in
and les des

Most frequent words in Genesis and et und
the de die
of la der
his a da
he il er

transcription of spoken conversations. This transcriptitay be aligned with the
speech signal and sometimes includes prosodic annotatoise, stress, etc. Anno-
tation tags, paragraph and sentence boundaries, partsexflgsyntactic or semantic
categories follow a variety of standards, which are calledkup languages.

Among annotated corpora, treebanks deserve a specificaneiitiey are col-
lections of parse trees or more generally syntactic strastaf sentences. The pro-
duction of a treebank generally requires a team of linguéstsarenthesize the con-
stituents of a corpus or to arrange them in a structure. Agtadtcorpora require a
fair amount of handwork and are therefore more expensivertha texts. Treebanks
involve even more clerical work and are relatively rare. Fenn Treebank (Mar-
cus et al. 1993) from the University of Pennsylvania is a Widdéted example for
English.

A last word on annotated corpora: in tests, we will benchraatkmatic methods
against manual annotation, which is often called the Gadah&ird. We will assume
the hand annotation perfect, although this is not true iota. Some errors slip into
hand-annotated corpora, even in those of the best qualitythee annotators may not
agree between them. The scope of agreement varies depesdithg annotation
task. The inter-annotator agreement is high for parts oédpelt is lower when
annotating the sense of a word.

2.1.2 Corpora and Lexicon Building

Lexicons and dictionaries are intended to give word lisispriovide a reader with
word senses and meanings, and to outline their usage. béctes’ main purpose
is related to lexical semantics. Lexicography is the saearfduilding lexicons and
writing dictionaries. It uses electronic corpora exteabiv

The basic data of a dictionary is a word list. Such lists canlfasvn manually
or automatically from corpora. Then, lexicographers witite word definitions and
choose citations illustrating the words. Since most of time tcurrent meanings are

2.1 Corpora 25

obvious to the reader, meticulous lexicographers tendedltect examples — cita-

tions — reflecting a rare usage. Computerized corpora cgnlésétographers avoid

this pitfall by extracting all the citations that exempldyword. An experienced lexi-

cographer will then select the most representative exapé reflect the language
with more relevance. S/he will prefer and describe moreufeequsage and possibly
set aside others.

Finding a citation involves sampling a fragment of text surrding a given word.
In addition, the context of a word can be more precisely meashy finding recur-
rent pairs of words, or most frequent neighbors. The first@se results in concor-
dance tables, and the second one in collocations.

Concordance tables were first produced for antiquity and religious stadi
Hugues de Saint Cher is known to have compiled the first Bibfeeordance in the
thirteenth century. Concordances consist of text excergitered on a specific word
and surrounded by a limited number of words before and df(@able 2.2). Other
more elaborate concordances take word morphology intoustamr group words
together into semantic themes. Sceur Jeanne d’Arc (197@upeal an example of
such a concordance for Bible studies.

Table 2.2.Concordance afniraclein the Gospel of John.

Language Concordances

English s beginning of miracles did Je
n they saw the miracles which
n can do these miracles that t
ain the second miracle that Je
e they saw his miracles which

French le premier des miracles que fi
i dirent: Quel miracle nous mo
om, voyant les miracles qu'il
peut faire ces miracles que tu
s ne voyez des miracles et des

German ist das erste Zeichen, das Je
du uns flr ein Zeichen, dal du
en, da sie die Zeichen sahen,
emand kann die Zeichen tun, di
Wenn ihr nicht Zeichen und Wun

Concordancing is a powerful tool to study usage patterns@wdite definitions.
It also provides evidences on certain preferences betwerds and prepositions, ad-
jectives and nouns, recurring expressions, or commonglynfarms. These couples
are referred to asollocations Church and Mercer (1993) cite a striking example of
idiosyncratic collocations oftrongandpowerful While strongand powerfulhave
similar definitions, they occur in different contexts, aswh in Table 2.3.

Table 2.4 shows additional collocationsstfongandpowerful These word pref-
erences cannot be explained using rational definitionscéutbe observed in cor-

26 2 Corpus Processing Tools

Table 2.3.Comparingstrongandpowerful

English French German
You say Strong tea Thé fort Kréaftiger Tee
Powerful computer Ordinateur puissant Starker Computer
You don't say Strong computer Thé puissant Starker Tee
Powerful tea Ordinateur fort Kraftiger Computer

pora. A variety of statistical tests can measure the sthenfipairs, and we can
extract them automatically from a corpus.

Table 2.4.Word preferences aftrongandpowerfulcollected from the Associated Press cor-
pus. Numbers in columns indicate the number of collocatimuaences with wordy. After
Church and Mercer (1993).

Preference forstrongover powerful || Preference forpowerful over strong
strongw | powerfulw w strongw | powerfulw w
161 0 showing 1 32 than
175 2 support 1 32 figure
106 0 defense 3 31 minority

2.1.3 Corpora as Knowledge Sources for the Linguist

In the beginning of the 1990s, computer-based corpus asagmpletely renewed
empirical methods in linguistics. It helped design and ienpént many of the tech-
nigues presented in this book. As we saw with dictionariespes analysis helps
lexicographers acquire lexical knowledge and describguage usage. More gener-
ally, corpora enable us to experiment with tools and to emtftheories on real data.
For most language analysis programs, collecting relevargara of texts has then
become a necessary step to define specifications and measimerances. Let us
take the examples of part-of-speech taggers, parsersjaondue systems.

Annotated corpora are essential tools to develop parpeésh taggers or parsers.
Afirst purpose is to measure the tagging or parsing perfocearhe tagger or parser
is run on texts and their result is compared to hand annotatibich serves as a ref-
erence. A linguist or an engineer can then determine theracgithe robustness of
an algorithm or a parsing model and see how well it scales ugppyying it to a
variety of texts.

A second purpose of annotated corpora is to be a knowledgesstaurefine tag-
ging techniques and improve grammars. While developingengrar, a linguist can
see if changing a rule improves or deteriorates resultstdtleuning is then done
manually. Using statistical techniques, annotated ca@rptso enable researchers to

2.2 Finite-State Automata 27

acquire grammar rules or language models automaticallyraraitomatically to tag
or parse a text. We will see this in Chap. 7.

A dialogue corpus between a user and a machine is also ttiickevelop an
interactive spoken system. The corpus is usually colletieaugh fake dialogues
between a real user and a person simulating the machine emd®@peating such
experiments with a reasonable number of users enables ggtir@a text set cov-
ering what the machine can expect from potential userstheis easier to determine
the vocabulary of an application, to have a precise idea afivil®quencies, and
to know the average length of sentences. In addition, thiegli@ corpus enables
the analyst to understand what the user expects from theingcthat is, how s/he
interacts with it.

2.2 Finite-State Automata

2.2.1 A Description

The most frequent operation we do with corpora consists arckéng words or
phrases. To be convenient, search must extend beyond fixegsstWe may want
to search a word or its plural form, uppercase or lowercaserse expressions con-
taining numbers, etc. This is made possible using finiteestatomata (FSA) that we
introduce now. FSA are flexible tools to process texts andofiiee most adequate
to search strings.

FSA theory was designed in the beginning of computer sciesca model of
abstract computing machines. It forms a well-defined foisnathat has been tested
and used by generations of programmers. FSA stem from aeiiigh. These are
devices that accept — recognize — or reject an input stre@imeocters. FSA are very
efficient in terms of speed and memory occupation and aretedsylementin Pro-
log. In addition to text searching, they have many otheriappbns: morphological
parsing, part-of-speech annotation, and speech progessin

Figure 2.1 shows a three-state automaton numbered from Q where state
qo is called the start state and the final state. An automaton has a single start
state and any number of final states, indicated by doublkesirdrcs between states
designate the possible transitions. Each arc is annotgtaddel, which means that
the transition accepts or generates the correspondingctiear

An automaton accepts an input string in the following waystérts in the ini-
tial state, follows a transition where the arc characterchnes the first character of
the string, consumes the corresponding string charactdmeaches the destination
state. It makes then a second transition with the secontysthiaracter and contin-
ues in this way until it ends up in one of the final states antktieeno character left.
The automaton in Fig. 2.1 accepts or generates strings suah, abe, abbe, abbbe,
abbbbbbbbbbbbc, etc. If the automaton fails to reach a final state, eitheabse it has
no more characters in the input string or because it is tdjppa nonfinal state, it
rejects the string.

28 2 Corpus Processing Tools

Fig. 2.1. A finite-state automaton.

As an example, let us see how the automaton accepts stbingand rejects
abbedb. The inputabbe is presented to the start state The first character of the string
matches that of the outgoing arc. The automaton consumesatba: and moves to
stateg; . The remaining string isbc. Then, the automaton loops twice on statand
consumes$b. The resulting string is characterFinally, the automaton consumes
and reaches statg, which is the final state. On the contrary, the automaton does
not accept strin@gbbcd. It moves to states, ¢, andgs, and consumesbbe. The
remaining string is letteb. Since there is no outgoing arc with a matching symbol,
the automaton is stuck in staje and rejects the string.

Automata may contaia-transitions from one state to another. In this case, the
automaton makes a transition without consuming any cheractthe input string.
The automaton in Fig. 2.2 accepts stringsb, abb, etc. as well asc, abc, abbe, etc.

Fig. 2.2. A finite-state automaton with antransition.

2.2.2 Mathematical Definition of Finite-State Automata

FSA have a formal definition. An FSA consists of five compoeé@t X, qo, F, 0),
where:

. Q is afinite set of states.

. X is afinite set of symbols or characters: the input alphabet.

. qo is the start statey, € Q.

. Fis the set of final stateg; C Q.

. ¢ is the transition functiod) x X~ — @, whered(g, i) returns the state where
the automaton moves when it is in stgtand consumes the input symbol

GO wWNPEF

2.2 Finite-State Automata 29
The quintuple defining the automaton in Fig. 2.1Q0s= {q0,q1,¢2}, X =

{a7 ba C}, F = {QQ}: andé = {5((]07 (I) = (1, 5((]17 b) = (1, 6(q17 C) = QQ} The
state-transition table in Table 2.5 is an alternate repitesien of thes function.

Table 2.5.A state-transition table whefedenotes nonexisting or impossible transitions.

State\lnput a b ¢
q0 q
q1 @
ge 0

1

1 2

=SSR =
=R =

2.2.3 Finite-State Automata in Prolog

A finite-state automaton has a straightforward impleméman Prolog. It is merely
the transcription of the quintuplet definition. The followgicode describes the tran-
sitions, the start, and the final states of the automatongnZi.:

% The start state
start(q0).

% The final states
final(g2).

% The transitions

% transition(SourceState, Symbol, DestinationState)
transition(q0, a, ql).

transition(ql, b, gl).

transition(gql, c, g2).

The predicateaccept/l selects the start state and runs the automaton using
accept/2 . The predicateccept/2 is recursive. It succeeds when it reaches a
final state, or consumes a symbol of the input string and mak@sisition otherwise.

accept(Symbols) :-
start(StartState),
accept(Symbols, StartState).

% accept(+Symbols, +State)

accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).

30 2 Corpus Processing Tools

accept/1 either accepts an input symbol string or fails:

?- accept([a, b, b, c]).
Yes

?- accept([a, b, b, c, b]).
No

The automaton in Fig. 2.2 contaigstransitions. They are introduced in the
database as facts:

epsilon(ql, g2).

To take them into account, tlecept/2 predicate should be modified so that there
are two possible sorts of transitions. A first rule consumelsaacter and a second
one, corresponding to antransition, passes the string unchanged to the next state:

accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).

accept(Symbols, State) :-
epsilon(State, NextState),
accept(Symbols, NextState).

2.2.4 Deterministic and Nondeterministic Automata

The automaton in Fig. 2.1 is said to be deterministic (DFSé&Qaduse given a state
and an input, there is one single possible destination.state¢he contrary, a non-
deterministic automaton (NFSA) has states where it has &ehthe path is not
determined in advance.

Figure 2.3 shows an example of an NFSA that accepts the stringbb, abbb,
abbbd, etc. Takingabb as input, the automaton reaches the stateonsuming the
letter . Then, it has a choice between two states. The automatonitten move
to stateg, or stay in statey . If it first moves to statey, there will be one character
left and the automaton will fail. The right path is to loop ogt and then to move to
g2. e-transitions also cause automata to be nondeterministickig. 2.2 where any
string that has reached statecan also reach statg.

A possible strategy to deal with nondeterminism is to useipacking. When
an automaton has the choice between two or more statesdtselne of them and
remembers the state where it made the decision: the choioe [Fat subsequently
fails, the automaton backtracks to the choice point anadtseénother state to go to.
In our example in Fig. 2.3, if the automaton moves first toestatwith the string
bb, it will end up in a state without outgoing transition. It Wilave to backtrack and
select state; . Backtracking is precisely the strategy that Prolog usésmaatically.

2.2 Finite-State Automata 31

Fig. 2.3.A nondeterministic automaton.

2.2.5 Building a Deterministic Automata from a Nondetermiristic One

Although surprising, any nondeterministic automaton aGandnverted into an equiv-
alent deterministic automaton. We outline here an infordesicription of the deter-
minization algorithm. See Hopcroft et al. (2001) for a coetpldescription of this
algorithm.

The algorithm starts from an NFSE) n, X, qo, Fiv,) and builds an equiva-
lent DFSA(Qp, X, {qo}, Fp,dp), where:

e (@pisthe setof all the possible state subset@ gf It is called the power set. The
set of states of the automaton in Fig. 2.8)is = {qo, ¢1, ¢=}. The corresponding

setofsetsi€)p = {0, {qo}, {a1},{a2}, {90, 1}, {90, @2}, {q1, @2}, {90, 01, G2} }-
If Qn hasn states()p will have 2™ states. In general, many of these states will

be inaccessible and will be discarded.
e I is the set of sets that include at least one final statExafIn our example,

@p = {{a}: {90, 2} {01, a2}, {90, 1. @2} }-
on (s,a)
* For each seS C @Qn and for each input symbal, 6p(S,a) = |J . The

ses
state-transition table in Table 2.6 represents the autmmiatFig. 2.3. Table 2.7
represents the determinized version of it.

Table 2.6.The state-transition table of the nondeterministic automahown in Fig. 2.3.

State\lnput a b

qo q1 0
q1 0 q,q
a2 o 0

2.2.6 Searching a String with a Finite-State Automaton

Searching the occurrences of a string in a text correspamsbgnizing them with
an automaton, where the string characters label the segoétransitions. However,
the automaton must skip chunks in the beginning, betweendberrences, and at

32 2 Corpus Processing Tools

Table 2.7.The state-transition table of the determinized automatdfig. 2.3.

State\lnput a b

]]]
{qo} {a} 0
{a1} 0 {q. g}
{q2} 0 1]

{q0. a1} {a} {q1, 42}
{0, @2} {a} 0

{@1, g2} 0 {q. g}
{90, a1, @2} {a@1} { @1, g}

the end of the text. The automaton consists then of a corepticgehe searched
string and of loops to process the remaining pieces. Conaghen the automaton in
Fig. 2.1 and modify it to search strings, abe, abbe, abbbe, etc., in a text. We add
two loops: one in the beginning and the other to come backtantkke search again
(Fig. 2.4).

Fig. 2.4.Searching stringac, abc, abbe, abbbe, etc.

In doing this, we have built an NFSA that it is preferable towert into a DFSA.
Hopcroft et al. (2001) describe the mathematical propedfesuch automata and an
algorithm to automatically build an automaton for a givehafepatterns to search.
They notably report that resulting DFSA have exactly theesanmber of states as
the corresponding NFSA. We present an informal solutionetiganine the transi-
tions of the automaton in Fig. 2.4.

If the input text does not begin with an the automaton must consume the be-
ginning characters and loop on the start state until it fints &igure 2.5 expresses
this with an outgoing transition from state O to state 1 ladekith ana and a loop
for the rest of the characters. — a denotes the finite set of symbols excepErom
state 1, the automaton proceeds if the text continues wiltleiead or ac. If it is
an a, the preceding is not the beginning of the string, but there is still a chance
because it can start again. It corresponds to the seconalosfate 1. Otherwise, if
the next character falls in the sBt— {a, b, ¢}, the automaton goes back to state 0.
The automaton successfully recognizes the string if itheacstate 2. Then it goes

2.2 Finite-State Automata 33

back to state 0 and starts the search again, except if thechaxacter is am, for
which it can go directly to state 1.

Fig. 2.5.An automaton to search strings, abc, abbc, abbbe, etc., in a text.

2.2.7 Operations on Finite-State Automata

FSA can be combined using a set of operations. The most usefthe union, the
concatenation, and the closure.

The union or sum of two automat& and B accepts or generates all the strings
of A and all the strings oB. It is denotedA U B. We obtain it by adding a new
initial state that we link to the initial states df and B (Fig. 2.6) using:-transitions
(Fig. 2.7).

Fig. 2.6.AutomataA (left) and B (right).

The concatenation or product dfand B accepts all the strings that are concate-
nations of two strings, the first one being acceptediland the second one Wy. It
is denotedA. B. We obtain the resulting automaton by connecting all thd fitades
of A to the initial state ofB usinge-transitions (Fig. 2.8).

The iteration or Kleene closure of an automatéraccepts the concatenations
of any number of its strings and the empty string. It is dedoté, where A* =
{eJUAUAAUAAAUAAAAU....We obtain the resulting automaton by
linking the final states ofi to its initial state using-transitions and adding a new

34 2 Corpus Processing Tools

Fig. 2.8.The concatenation of two automat&:B.

initial state, as shown in Fig. 2.9. The new initial stateldas us to obtain the empty
string.

Fig. 2.9.The closure ofA.

The notationY'* designates the infinite set of all possible strings geneifaten
the alphabel’. Other significant operations are:

2.3 Regular Expressions 35

* The intersection of two automatbn B that accepts all the strings accepted both
by A and byB If A = (E,Ql,ql,F1,51) andB = (E,QQ,QQ,FQ,52), the
resulting automaton is obtained from the Cartesian prodiistates(X, Q1 x
QQ, <ql, QQ> , By X< Fy, 63) with the transition fl.ll’]Cti0ﬁ3(<817 Sg) ,i) = {<t1, t2> |
t, € 51(817i) Nt € 52(82, Z)}

« The difference of two automaté — B that accepts all the strings accepteddby
but not by B.

* The complementation of the automatdrin X* that accepts all the strings that
are not accepted hy. It is denotedd, whered = ¥* — A.

e The reversal of the automatehthat accepts all the reversed strings accepted by
A.

Two automata are said to be equivalent when they accept erggerexactly the
same set of strings. Useful equivalence transformatiotimgqe computation speed
or memory requirements. They include:

* e-removal, which transforms an initial automaton into aniegjent one without
e-transitions

» determinization, which transforms a nondeterministtoanaton into a determin-
istic one

* minimization, which determines among equivalent aut@ntia one that has the
smallest number of states

Optimization algorithms are out of the scope of this bookpéfoft et al. (2001) as
well as Roche and Schabes (1997) describe them in detail.

2.3 Regular Expressions

The automaton in Fig. 2.1 generates or accepts strings ceedpef oneu, zero or
morebd’s, and onec. We can represent this set of strings using a compact notatio
ab+ c, where the star symbol means any number of the precedingatiearSuch a
notation is called a regular expression or regex. Regularessions are very power-
ful devices to describe patterns to search in a text. Althdhgir notation is different,
regular expressions can always be implemented under tiredfbsiutomata, and vice
versa. However, regular expressions are generally easieset

Regular expressions are composed of literal charactatdsttordinary text char-
acters likeabc , and of metacharacters likethat have a special meaning. The sim-
plest form of regular expressions is a sequence of literalatters: letters, numbers,
spaces, or punctuation signs. Regevazpular or Prolog match stringsegular
or Prolog contained in a text. Table 2.8 shows examples of patternhimgtavith
literal characters. Regular expressions are case-senaitd match the first instance
of the string or all its instances in a text, depending on #gex language that is
used.

There are currently a dozen major regular expression layjepifeely available.
Their common ancestor grep , which stands for global/regular expression/print.

36 2 Corpus Processing Tools

Table 2.8.Examples of simple patterns and matching results.

Pattern String

regular “A section on regulaexpressions”
Prolog “The Prologlanguage”

the “The book of thdife”

grep is a standard Unix tool that prints out all the lines of a filattieontain a
given pattern. Thgrep user interface conforms to the Unix command-line style.
It consists of the command name, hgrep , options, and the arguments. The first
argument is the regular expression delimited by singlégtitajuotes. The next ar-
guments are the files where to search the pattern:

grep 'regular expression’ filel file2 ... filen
The Unix command:
grep 'abc’ myFile
prints all the lines of filanyFile containing the stringbc and
grep 'ab *c’ myFilel myFile2

prints all the lines of filemyFilel andmyFile2 containing the stringac, abe,
abbe, abbbe, etc.

grep had a considerable influence on its followers. Most of theimeagl to a
comparable syntax. Among the most popular languages fegttegexes now are
Perl and Python, Java, and C#. In the following sectionsdéseription of the syn-
tactic features refers tegrep , which is a modern version afrep available for
most operating systems.

2.3.1 Repetition Metacharacters

We saw that the metacharacteexpressed a repetition of zero or more characters,
as inab* c. Other characters that describe repetitions are the questark,?, the
plus,+, and the dot, (Table 2.9). The star symbol is also called the closure dpera
or the Kleene star.

If the pattern to search contains a character that is alsotacimaracter, for in-
stance, “?”, we need to indicate it to the regex engine usibgckslash, before it.
We saw thabc? matches:b andabe. The expressioabc \? matches the string
abc?. In the same veimbc \. matches the stringbc., anda* bc matchesa*bc.
The backslash is also called the escape character. It ramsfa metacharacter into
a literal symbol. In most regex languages, we must quoteachenrs ,?,(,),[,],
{,},=,+,1,7,%, and\ to search them literally.

2.3 Regular Expressions 37

Table 2.9.Repetition metacharacters.

Metachars Descriptions Examples
* Matches any number of occurrences*e matches stringsae, ace,
of the previous character — zero @rcce , accce , etc. as in “The adal
more accderation alerted the aqalot”
? Matches at most one occurrence a€?e matchesae and ace as in
the previous characters — zero or orffhe aeial acceleration alerted the
acepilot”
+ Matches one or more occurrences a+e matches ace, acce,
the previous characters accce, etc. as in as in “The
aerial acckeration alerted the ace
pilot”
{n} Matches exactly: occurrences of theac{2}e matchesacce as in “The
previous characters aerial_acckeration alerted the ace pi-
lot”
{n} Matchesn or more occurrences of thac{2,}e matchesacce , accce ,
previous characters etc.
{n,m} Matches fromn to m occurrences ofac{2,4}e matchesacce , accce ,
the previous characters andacccce .

Matches one occurrence of any cha-e matchesaae, aAe, abe, aBe,
acters of the alphabet except the n@fe, etc. as in “The aerial accelera-
line character tion aleted the aceilot”

L * Matches any string of characters and
until it encounters a new line charac-
ter

2.3.2 The Longest Match

The description of repetition metacharacters in Table Brietimes makes string
matching ambiguous, as with the striagbbc and the regea+b+, which has six
possible matcheg; aa, ab, aab, abb, andaabb. In fact, matching algorithms use two
rules that are common to all the regex languages:

1. They match as early as they can in a string.
2. They match as many characters as they can.

Hence,a+b* matchesiabb, which is the longest possible match. The matching
strategy of repetition metacharacters is said to be greedy.
In some cases, the greedy strategy is not appropriate. plagdithe sentence

They matclas earlyandas manycharacters as they can.

in a Web page with two phrases set in bold, we need specifidtagisve will insert
in the source file. Using HTML, the language of the Web, thdéesgze will probably
be annotated as

38 2 Corpus Processing Tools

They match as early and as many
characters as they can.

where and mark respectively the beginning and the end of a phrase set in
bold. (We will see annotation frameworks in more detail ira@h3.)
A regular expression to search and extract phrases in bald be:

. *
Unfortunately, applying this regex to the sentence willchaine single string:

as early and as many

which is not what we wanted. In fact, this is not a surprise w&ssaw, the regex
engine matches as early as it can, i.e., from the §ibst and as many characters as
it can up to the second/b> .

A possible solution is to modify the behavior of repetitioetacharacters and
make them “lazy.” They will then consume as few charactesoasible. We create
the lazy variant of a repetition metacharacter by appendimgiestion mark to it
(Table 2.10). The regex

. * ?

will then match the two intended strings,

as early andas many .

Table 2.10.Lazy metacharacters.

Metachars Descriptions

*? Matches any number of occurrences of the previous charaaer or more
?? Matches at most one occurrence of the previous characten®-erzone

+? Matches one or more occurrences of the previous characters

{n}? Matches exactly: occurrences of the previous characters

{n}? Matchesn or more occurrences of the previous characters

{n,m}? Matches fromn to m occurrences of the previous characters

2.3.3 Character Classes

We saw that the dot,, represents any character of the alphabet. It is possilde-to
fine smaller subsets afassesA list of characters between square brackeths

matches any character contained in theédtc] means one occurrence of eitlaer

b, orc. [ABCDEFGHIJKLMNOPQRSTUVWX¥YH#gans one uppercase unaccented
letter, and0123456789] means one digit. We can concatenate character classes,
literal characters, and metacharacters, as in the expre§6il23456789]+ and

2.3 Regular Expressions 39

[0123456789]+ \.[0123456789]+ ,that match respectively integers and dec-
imal numbers.

Character classes are useful to search patterns withrgpdifferences, such as
[Cclomputer [Ss]cience , which matches four different strings:

Computer Science
Computer science
computer Science
computer science

We can define the complement of a character class, that ischhecters
of the alphabet that are not member of the class, using thet egmbol,”, as
the first symbol inside the angle brackgf®] means any character that is not
ana. [(0123456789] means any character that is not a digit. The expression
[TABCD] * means any string that does not contajrB, C, or D. The caret must be
the first character after the brackets. The expredsidsj matches eithes, ”, orb.

Inside angle brackets, we can also specify ranges usinggteaharacter. The
expressioril-4] means any of the digitk, 2, 3, or4, anda[1-4]b matcheslh,
a2h a3¢ or adh The expressiofa-zaddseceeééiivvoeRuluy] matches any
lowercase accented or unaccented letter of French and @elimae want to search
the dash character itself, we need to quote it-asThe expressiofiL \-4] means
any of the charactelf -, or4.

Most regex languages have also predefined classes. Tallés?slsome useful
ones. Some classes may be specific to one regex languagselofadoubt, refer to
the corresponding manual.

2.3.4 Nonprintable Symbols or Positions

Some metacharacters match positions and nonprintableagnfPositions orln-
chors enable one to search a pattern with a specific location intaTé&ey encode
the start and end of a line, using respectively the caretnd the dollarg.

The expressiofChapter matches lines beginning witbhapterand[0-9]+$
matches lines ending with a number. We can combine bétbhapter [0-9]+$
that matches lines consisting only of t@&apterword and a number a&Shapter 3
for example.

The command line

egrep aeiou]+$' myFile

matches lines ayFile containing only vowels.

Similarly, metacharacters< and \> match the start and end of a word. The
expressior\<ace matchesacesandacetylenebut notplace Converselyace \>
matchesplace but neitheracesnor acetylene The expression<act \> matches
exactly the wordact and notreact or acted Table 2.12 summarizes anchors and
some nonprintable characters.

In Perl, word boundaries are indicated kb instead of\< and \>, as in
\bact \b.

40 2 Corpus Processing Tools
Table 2.11.Predefined character classes.
Expressions Descriptions Examples
\d Any digit. Equivalent td0-9] A \dC matchesAOC, A1C, A2C,
A3Cetc.
\D Any nondigit. Equivalent t¢"0-9]
\w Any word character: letter, digit, 1\w2 matchesla2, 1A2, 1b2,
or underscore. Equivalent to 1B2, etc
[a-zA-Z0-9_]
\W Any nonword character. Equivalent to
[\w]
\s Any white space character: space, tab-
ulation, new line, form feed, carriage
return, or backspace.
\S Any nonwhite space character.
Equivalent to~ \s]
[:alpha:] Any alphabetic character. It includesl[:alpha:]2 matches 1a2,
accented characters 1A2,1b2, 1B2, etc.
[:digit:] Any digit Al:digit:]C matches AOC,
A1C, A2C, A3Cetc.
[:upper:] Any uppercase character. It includesA[:upper:]C matches AAG
accented characters ABGC ACC ADCetc.
[:lower:] Any lowercase character. It includesA[:lower:]C matches AaC,
accented characters AbC, AcC, AdCetc.
Table 2.12.Some metacharacters matching nonprintable characters.
Metachars Descriptions Examples
- Matches the start of a line "ab * ¢ matchesac, abc, abbc, abbbc , etc.
when they are located at the beginning of a new
line
$ Matches the end of a line ab?c$ matchesac andabc when they are lo-
cated at the end of a line
\< Matches the start of a word\<abc matchesabcd but notdabc
\> Matches the end of a word bcd \> matchesabcd but notabcde
\n Matches a new line a\nb matches
a
b
\t Matches a tabulation -
\r Matches the carriage return -
character
\f Matches the form feed char- -
acter
\e Matches the escape charac- -
ter

\a

Matches the bell character -

2.3 Regular Expressions 41
2.3.5 Union and Boolean Operators

We reviewed the basic constructs to write regular exprassid powerful feature
is that we can also combine expressions with operators, thasawtomata. Using a
mathematical term, we say that they define an algebra. Ussinggaer analogy, this
means that we can arrange regular expressions just likereeitc expressions. This
greatly eases the design of complex expressions and makas/try versatile.
Regex languages use three main operators. Two of them aadglfamiliar to
us. The first one is the Kleene star or closure, denetéithe second one is the con-
catenation, which is usually not represented. It is implitstrings likeabc , which
is the concatenation of charactersh, andc. To concatenate the wombmputer a
space symbol, anstiencewe just write them in a roncomputer science
The third operation is the union and is denotéd The expressiora|b means
eithera or b. We saw that the regular expressi@c]lomputer [Ss]cience
could match four strings. We can rewrite an equivalent esgiom using the union
operatorComputer Science |Computer science |computer Science |
computer science . A union is also called an alternation because the corre-
sponding expression can match any of the alternatives foere

2.3.6 Operator Combination and Precedence

Regular expressions and operators are grouped using pesest If we omit them,
expressions are governed by rules of precedence and asstcidhe expression
a|bc matches the strings andbc because the concatenation operator takes prece-
dence over the union. In other words, the concatenatiorstiecharacters stronger
than the union. If we want an expression that matches thegsti andbc, we need
parenthese@ |b)c .

Let us examine another example of precedence. We rewrotexpeession
[Cclomputer [Ss]cience using a union of four strings. Since the difference
between expressions lies in the first letters only, we cakotrgvise this union into
something more compact. The character c[@s3 is equivalent to the alternation
Clc, which matches eith&? or c. A tentative expression could then Bgomputer
S|science . Butit would not match the desired strings; it would find ocences of
eitherC, computer Sor scienceébecause of the operator precedence. We need paren-
theses to group the alternatio(s |c)omputer (S |s)cience and thus match
the four intended strings.

The order of precedence of the three main operators uniatatenation, and
closure is as follows:

1. closure and other repetition operator (highest)
2. concatenation, line and word boundaries
3. union (lowest)

This entails thatbc * describes the seth, abe, abee, abeee, etc. To repeat the
patternabe, we need parentheses. And the expresgine) * corresponds tabe,
abcabe, abcabeabe, etc.

42 2 Corpus Processing Tools
2.4 Programming with Regular Expressions

2.4.1 Perl

grep andegrep are tools to search patterns in texts. If we want to use them fo
more elaborate text processing such as translating cleasaciubstituting words,
counting them, we need a full-fledged programming langut@eexample, Perl,
Python, AWK, and Java with itg@va.util.regex package. They enable the
design of powerful regular expressions and at the same tirag,are complete pro-
gramming languages. This section intends to give you a gérgs Perl program-
ming. We discuss features of Perl in this chapter and thearextFurther references
include Wall et al. (2000) and Schwartz and Phoenix (2001).

2.4.2 Matching

Perl has constructs similar to those of the C language. Ilahakgous control flow
statements, and the assignment operator is demotddwever, variables begin with
a dollar sign and are not typed. Comments start withi#thgmbol. The short program

A first program

$integer = 30;

$pattern = "My string";

print $integer, " ", $pattern, "\n";

prints the line
30 My string
We run it with the command:
perl -w program.pl

where the optionw asks Perl to check syntax errors.
The next program reads the input line and searches the sikpned* c. If it
finds the expression, it prints the line:

while ($line = <>) {
if ($line =~ m/ab *cf) {
print $line;
}

}

The program uses repeat and conditional statements. Thaosyn designates
the standard input, and the instructiline = <> assigns the current line from
the input to the$line variable. Thewhile instruction reads all the lines until it
encounters an end of file. Tm/.../ instruction delimits the regular expression
to match, and the™ operator instructs Perl to search it in thene variable. If
the expression matches a stringditine , the =" operator returns true, or false
otherwise. Thef instruction tells the program to print the input when it Gns
the pattern. We run the program to search thefifile name with the command:

2.4 Programming with Regular Expressions 43
perl -w program.pl file_name

The match operator supports a set of options also calledfirasdiTheir syntax
is m/regex/modifiers . Useful modifiers are

e Case insensitive:. The instructiorm/regex/i searchesegex in the target
string regardless of its case.

e Multiple lines: m By default, the anchors and$ match the start and the end
of the input string. The instructiom/regex/m considers the input string as
multiple lines separated by new line characters, whererthba@s and$ match
the start and the end of any line in the string.

* Single line:s. Normally, a dot symbol *” does not match new line characters.
The/s modifier makes a dot in the instructiomregex/s match any character
including new lines.

Modifiers can be grouped in any order asnmregex/im , for instance, or
m/regex/sm , where a dot inregex matches any character and the anchors
and$ match just after and before new line characters.

2.4.3 Substitutions

One of the powerful features of Perl is pattern substitutibmses a construct similar
to the match instructiors/regex/replacement/ . The instruction

$line =~ s/regex/replacement/

matches the first occurrence mfgex and replaces it byeplacement in the
$line variable. If we want to replace all the occurrences of a pattee use thg
modifier, whergg stands for globally:

$line =~ s/regex/replacement/g

We shall write a program to replace the occurrencesbsfc by ABCin a file
and print them. We read all the lines of the input. We use te&uetionm/ab * c/
to check whether they match the regular expresalonc . We then print the old line
and we substitute the matched pattern using the constfaizt* c/ABC/ :

while ($line = <>) {
if ($line =~ m/ab *cl) {
print "Old: ", $line;
$line =~ s/ab *c/ABC/g;
print "New: ", $line;
}
}

44 2 Corpus Processing Tools

2.4.4 Translating Characters

The instructiontr/search_list/replacement_list/ replaces all the oc-
currences of the characters search_list by the corresponding character in
replacement_list . The instructiontr/ABC/abc/ replaces the occurrences

of A, B, andC by a, b, andc, respectively. The string
AbCdEfGhIjKIMNOpQrStUvWxYzEd

results in
abcdEfGhIjKIMNOpQrStUvWxYzE®
The hyphen specifies a character range, as in the instruction
$line =~ tr/A-Z/a-z/,

which converts the uppercase characters to their loweesgalents. The instruc-
tiontr has useful modifiers:

< d deletes any characters of the search list that are not fauttttireplacement
list.

e ¢ translates characters that belong to the complement ottirels list.

* s reduces — squeezes, squashes — sequences of charactasddao an identi-
cal character to a single instance.

The instruction

$line =~ tr/AEIOUaeiou//d;
deletes all the vowels ifiline and

$line =~ tr/AEIOUaeiou\$/cs;

replaces all nonvowel characters b$ aign. The contiguous sequences of translated
dollar signs are reduced to a single sign.

2.4.5 String Operators

Perl operators are similar to those of the C and Java langudgey are summa-
rized in Table 2.13. The string operators are notable d@iffees. They enable us to
concatenate and compare strings.

The Boolean operatoesy (equal) anche (not equal) compare two strings. The
dot is the concatenation operator:

$stringl = "abc";

$string 2 = "def";

$string3 = $stringl . $string2;
print $string3;

#prints abcdef

2.4 Programming with Regular Expressions 45

As with the C and Java operators, the shorthand not&vaml .= $var2
is equivalent to$varl = $varl . $var2 . The following program reads the
content of the input line by line, concatenates it in$text variable, and prints it

while ($line = <>) {

$text .= $line;
}
print $text;
Table 2.13.Summary of the main Perl operators.
Unary operators ! Logical not
+and- Arithmetic plus sign and negation
Binding operators = Returns true in case of match success
I~ Returns false in case of match success
Arithmetic operators * and/ Multiplication and division
+and- Addition and subtraction
String operator . String concatenation

Arithmetic comparison oper- >and< Greater than and less than

ators
>= and<= Greater than or equal and less than or equal
==and!= Equal and not equal

String comparison operators ge andle Greater than and less than
gt andlt Greater than or equal and less than or equal
eq andne Equal and not equal

Logical operators && Logical and
Il Logical or

2.4.6 Back References

It is sometimes useful to keep a reference to matched pattarparts of them.
Let us imagine that we want to find a sequence of three iddmi@aacters, which
corresponds to matching a character and checking if the taextcharacters are
identical to the first character. To do this, we first tell Renfemember the matched
pattern and we put parentheses around it. It creates a laffesld the pattern and
we refer back to it by the sequenté. The instructions/(.) \1\1/ ***/g
replaces these sequences by three stars.

46 2 Corpus Processing Tools

Perl can create as many buffers as we need. It allocates amewlwen it en-
counters a left parenthesis and refers it back by referéyiceg?, \3, etc. The first
pair of parentheses corresponds\fih the second pair t§2, the third to\3, etc.
Outside the match expression thedigit> reference is denoted #<digit>
$1, $2, $3, etc. As an example, the next program captures occurrericasrey
amounts in dollars. It prints the dollars and cents:

while ($line = <>) {
while ($line =~ mA\$ * ([0-9]+)\.?([0-9] *)g) {
print "Dollars: ", $1, " Cents: ", $2, "\n";
}

}

2.5 Finding Concordances

2.5.1 Concordances in Prolog

Concordances of a word, an expression, or more generallystaimg in a corpus
are easy to obtain with Prolog. Let us suppose that the casmepresented as one
single big string: a list of characters. Concordancing $jngonsists in matching
the pattern we are searching as a substring of the whol€Tligtre is no need to
consider the corpus structure, that is, whether it is madaniks, words, sentences,
or paragraphs.

We implement the search with two auxiliary predicatpsefix(+List,
+Span, -Prefix) that extracts the prefix of a list with up ®pan characters,
and prepend(+List, +Span, -PrependedList) that addsSpan vari-
ables onto the beginning of a list.

Now let us write theconcordance/4 predicate. It find$attern in List
and returns the firdtine where it occursSpan is the window size, for example,
15 characters to the left and to the right, within whigattern will be displayed.
We first prependPattern with Span variables before it to match the pattern and
its right context. We find it with a combination of tvappend/3 calls; then we use
prefix/3 to extract up tdSpan characters after it.

% concordance(+Pattern, +List, +Span, -Line)
% finds Pattern in List and displays the Line
% where it appears within Span characters
% surrounding it.

concordance(Pattern, List, Span, Line) :-
name(Pattern, LPattern),
prepend(LPattern, Span, LeftPattern),
append(_, Rest, List),
append(LeftPattern, End, Rest),
prefix(End, Span, Suffix),

2.5 Finding Concordances

append(LeftPattern, Suffix, LLine),
name(Line, LLine).

% prefix(+List, +Span, -Prefix) extracts the prefix

% of List with up to Span characters.

% The second rule is to check the case where there
% are less than Span character in List.

prefix(List, Span, Prefix) :-
append(Prefix, _, List),
length(Prefix, Span),
|

prefix(Prefix, Span, Prefix) :-
length(Prefix, L),
L < Span.

% prepend(+List. +Span, -Prefix) adds Span variables
% to the beginning of List.

prepend(Pattern, Span, List) :-
prepend(Pattern, Span, Pattern, List).

prepend(_, O, List, List) :- L
prepend(Pattern, Span, List, FList) :-
Spanl is Span - 1,
prepend(Pattern, Spanl, [X | List], FList).

Let us apply this program to retrieve the concordancds$aedénin thelliad. We
makeconcordance/4 backtrack until all the occurrences have been found:

?- read_file(iliad.txt’, L), concordance(’'Helen’, L,
20, C), write(C),nl, fail.

ry of still keeping Helen, for whose sake so

ry of still keeping Helen, for whose sake so

red for the sake of Helen. Nevertheless, if a
red for the sake of Helen. The men of Pylos

in their midst for Helen and all her wealth.

he midst of you for Helen and all her wealth.
nwhile Iris went to Helen in the form of her

ke the goddess, and Helen's heart yearned aft
wood. When they saw Helen coming towards the
" "Sir," answered Helen, "father of my husb

No

48 2 Corpus Processing Tools

Because the pattern is prepended with exa8pgn variables, the concordance
program will not examine the fir@pan characters of the file. This means that it will
not find a possible pattern in this sublist. In our examplevabthe program finds all
the occurrences diielenexcept the ones that could occur in the first 15 characters
of the text. This is easily corrected in the program and isdsfan exercise.

2.5.2 Concordances in Perl

Arrays in Perl. Writing a basic concordance program is also easy in Perl.-How
ever, to be convenient, the program must be able to read péeasrfrom the com-
mand line — the file name, the pattern to search, and the spanfdhe concordance
—asin

perl -w concordance.pl corpus.txt my_word 15

These arguments are passed to Perl by the operating systemthe form of an
array. Before writing the program, we introduce this featoiow.

Arrays in Perl are data structures that can hold any numbeleofients of any
type. Their name begins with an at sigm for example@array . Each element has
a position where the programmer can store and read datathsiqpsition index.

An array grows or shrinks automatically when elements apeaged, inserted,
or deleted. Perl manages the memory without any interveifitton the programmer.
Here are some examples of arrays:

@arrayl = (); # The empty array
@array2 = (1, 2, 3); # Array containing 1, 2, and 3

$varl = 3.14;

$var2 = "my string";

@array3 = (1, $varl, "Prolog", $var2);

Array containing four elements of different type

@array4d = (@array2,@array3);
#Same as (1, 2, 3, 1, 3.14, "Prolog", "my string")

Reading or assigning a value to a position of the array is dmirgg its index
between square brackets starting from 0O:

print $array2[1]; # prints 2

If an element is assigned to a position that did not exist feefBerl grows the
array to store it. The positions in-between are not initizdi. They hold the value
undef :

$array4[10] = 10;

print $array4[10]; # prints 10

print $array4[9];

prints a message telling it is undefined

2.5 Finding Concordances 49

The existence of a variable can be tested usingl#fmmed Boolean function
asin:

if (defined($array4[9])) {
print "yes", "\n";

} else {
print "no", "\n";

}

If an undef value is used as a number, it is considered to be a zero. The nex
two lines print 1.

$array4[9]++;
print $array4[9];

The variable$#array is the index of the last element of the array. It can be
assigned to grow or shrink the array:

$length4 = S$#array4;

print $length4; # prints 10

print $#array2; # prints 2

$#arrayd = 5; # shrinks the array to 6 elements.
Other elements are lost.

print $array4[10];

prints a message telling it is undefined

$#array2 = 10; # extends the array to 11 elements.
Indices 3..10 are undefined.

You can also assign a complete array to an array and an aradistof variables
asin:

@array5 = @array2;
(Bv1, $v2, $v3) = @array2;

where@array5 contains a copy ofarray2 , and$vl, $v2, $v3 contain respec-
tively 1, 2, and 3.

Printing Concordances in Perl. Now let us write a concordance program modi-
fied from Cooper (1999). First, we read the command line agqim the file name,
the pattern to search, and the span size. They are store& ireserved variable
@ARGMWVe open the file using thepen function, which assigns the stream to the
FILE identifier. Ifopen fails, the program exits usingje and prints a message to
inform us that it could not open the file.

The notation<FILE> designates the input stream, which is assigned to the
$line variable. We read all the text and we assign it toitext variable. To allow
matching across spaces, tabulations, and new lines, waceeppaces in the regular
expressior$pattern representing the pattern to search by the space metaatraract
\s. We also replace the new lines in the text by a space.

50 2 Corpus Processing Tools

Finally, we use avhile loop to match the pattern witbwidth characters to
the left and to the right. Thig modifier enables then/.../ instruction to match a
pattern and to start a new search from its current positioheraithe previous match

ended. Whem/.../g

fails to match, the start position is reset to the beginning

of the string. We create a back reference by setting parsesh@round the regular
expression to remember the matched pattern and we print it.

($file_name, $pattern, $width) = @ARGV;
open(FILE, "$file_name") ||
die "Could not open file $file_name.";

while ($line =

}

<FILE>) {
$text .= $line;

$pattern =~ s/ N\s/g;
spaces match tabs and new lines

$text =~ s/\n/ /g;

new lines are replaced by spaces
while ($text =~ m/(.{0,$width}$pattern.{0,Swidth})/g)}{
matches the pattern with 0..width
#to the right and left
print "$1\n"; #$1 contains the match

}

Now let us run the command:

perl -w concordance.pl odyssey.txt Penelope 20

itors of his mother Penelope, who persist in eat

ying out yet, while Penelope has such a fine son
upon the Achaeans. Penelope, daughter of Icariu
d of Ulysses and of Penelope in your veins | see
long-suffering wife Penelope, and his son Telema
It was not long ere Penelope came to know what t
reshold of her room Penelope said: "Medon, what

2.6 Approximate String Matching

So far, we have used regular expressions to match exactnmatiéowever, in many

applications, such as in spell checkers, we need to extench#tich span to search
a set of related patterns or strings. In this section, weevet@échniques to carry out
approximate or inexact string matching.

2.6.1 Edit Operations

A common method to create a set of related strings is to appgaence of edit
operations that transforms a source stririgto a target string. The operations are

2.6 Approximate String Matching 51

carried out from left to right using two pointers that marle ghosition of the next
character to edit in both strings:

e The copy operation is the simplest. It copies the curreatatter of the source
string to the target string. Evidently, the repetition opgmperations produces
equal source and target strings.

« Substitution replaces one character from the sourcegshyna new character
in the target string. The pointers are incremented by on@th the source and
target strings.

« Insertion inserts a new character in the target string. ftiater in the target
string is incremented by one, but the pointer in the souriegsts not.

« Deletion deletes the current character in the targetgstiie., the current char-
acter is not copied in the target string. The pointer in th&re® string is incre-
mented by one, but the pointer in the target string is not.

« Reversal (or transposition) copies two adjacent charactbthe source string
and transposes them in the target string. The pointers arenrented by two
characters.

Kernighan et al. (1990) illustrate these operations with thisspelled word
acressand its possible corrections (Table 2.14).

Table 2.14.Typographical errors (typos) and corrections. Stringedify one operation. The
correction is the source and the typo is the target. Unlessifigd, other operations are just
copies. After Kernighan et al. (1990).

Typo Correction Source Target Position Operation

acress actress - t 2 Deletion
acress cress a - 0 Insertion
acress caress ac ca 0 Transposition
acress access r c 2 Substitution
acress across e o] 3 Substitution
acress acres s 4 Insertion
acress acres S - 5 Insertion

If we allow only one edit operation on a source string of léngtand if we con-
sider an alphabet of 26 unaccented letters, the deletidryanlerate. new strings;
the insertion(n + 1) x 26 strings; the substitutiom x 25; and the transposition,
n — 1 new strings.

2.6.2 Minimum Edit Distance

Complementary to edit operations, edit distances measersitmilarity between

strings. They assign a cost to each edit operation, usuatiycOpies and 1 to dele-
tions and insertions. Substitutions and transpositionespond both to an insertion
and a deletion. We can derive from this that they each havetaot@. Edit distances

52 2 Corpus Processing Tools

tell how far a source string is from a target string: the loter distance, the closer
the strings.

Given a set of edit operations, the minimum edit distancéésdperation se-
quence that has the minimal cost needed to transform theesstrmg into the target
string. If we restrict the operations to copy/substitutsgirt, and delete, we can rep-
resent the edit operations using a table, where the dist@naeertain position in
the table is derived from distances in adjacent positioreadly computed. This is
expressed by the formula:

edit_distance(i — 1,7) + del_cost
edit_distance(i,j) = min | edit_distance(i — 1,7 — 1) + subst_cost
edit_distance(i,j — 1) + ins_cost

The boundary conditions for the first row and the first colurorrespond to a
sequence of deletions and of insertions. They are definediaslistance(i,0) =
andedit_distance(0, 7) = j.

We compute the cell values as a walk through the table frorbég@ning of the
strings at the bottom left corner, and we proceed upwardightivard to fill adjacent
cells from those where the value is already known. Arrowsign E.10 represent the
three edit operations, and Table 2.15 shows the distant¢essformlanguagento
lineage The value of the minimum edit distance is 5 and is shown atiiper right
corner of the table.

delete
t—=1,j————————4,j
replace
insert
i—1,/—1 i,j—1

Fig. 2.10.Edit operations.

Table 2.15.Distances betwedanguageandlineage

e |7 6 5 6 5 6 7 6 5
g |6 5 4 5 4 5 6 5 6
a |5 4 3 4 5 6 5 6 7
e |4 3 4 3 4 5 6 7 6
n |3 2 3 2 3 4 5 6 7
i |2 1 2 3 4 5 6 7 8
I |1 0 1 2 3 4 5 6 7
Start |0 1 2 3 4 5 6 7 8
— | Start | a n g u a g e

2.6 Approximate String Matching 53

The minimum edit distance algorithm is part of thenamic programming tech-
niques. Their principles are relatively simple. They uselse to represent data, and
they solve a problem at a certain point by combining sol#itansubproblems. Dy-
namic programming is a generic term that covers a set of wide¢d methods in
optimization.

We implement the minimum edit distance in Perl. We introdtieelength
function to compute the length of the source and target, amdisesplit(/,
$string) to convert a string into an array of characters. The inswnoct

@array = split(regex, $string)

breaks up théstring variable as many times asgex matches irbstring
Theregex expression acts as a separator, and the string pieces igmeeaksequen-
tially to @array . In the programregex is reduced to nothing and assigns all the
character$string as elements afarray .

($source, S$target) = @ARGV;

$length_s = length($source);

$length_t = length($target);

Initialize first row and column

for ($i = 0; $i <= $length_s; $i++) {
$table[$i][0] = $i;

for ($j = 0; $j <= $length_t; $j++) {
$table[0][$]] = $j;

Get the characters. Start index is 0
@source = split(//, $source);
@target = split(//, $target);
Fills the table.
Start index of rows and columns is 1
for ($i = 1; $i <= $length_s; $i++) {
for ($j = 1; $ <= $length_t; $j++) {
Is it a copy or a substitution?
$cost = ($source[$i-1] eq $target[$j-1]) ? 0: 2;
Computes the minimum
$min = S$table[$i-1][$j-1] + $cost;
if ($min > $table[$i][$j-1] + 1) {
$min = S$table[$i][$j-1] + 1;
}
if ($min > $table[$i-1][$j] + 1) {
$min = S$table[$i-1][$]] + 1;
}
$table[$i][$j] = $min;

54 2 Corpus Processing Tools

print "Minimum distance: ",
$table[$length_s][$length_t], "\n";

2.6.3 Searching Edits in Prolog

Once we have filled the table, we can search the operatiomeegsthat correspond
to the minimum edit distance. Such a sequence is also cailatipgmment.

The depth-first strategy is an economical way to traverseaecBespace. It is
easy to implement in Prolog and has low memory requiremdihis.problem with
it is that it blindly selects the paths to follow and can expleery deep nodes while
ignoring shallow ones. To avoid this, we apply a variationha depth-first search
where we fix the depth in advance to the minimum edit distaWeassign it in the
call paramete€ost of edit_distance/4

The code of the depth-limited search is similar to the ddjpghprogram (see
Appendix A). We add a counter in the recursive case that sepits the current
search depth and we increment it until we have reached tié deit. We compute
each individual edit operation and its cost with &ttt _operation/6 predicate.

% edit_distance(+Source, +Target, -Edits, +Cost).
edit_distance(Source, Target, Edits, Cost) :-
edit_distance(Source, Target, Edits, 0, Cost).

edit_distance([], [], [], Cost, Cost).
edit_distance(Source, Target, [EditOp | Edits], Cost,
FinalCost) :-
edit_operation(Source, Target, NewSource,
NewTarget, EditOp, CostOp),
Costl is Cost + CostOp,
edit_distance(NewSource, NewTarget, Edits, Cost1,
FinalCost).

% edit_operation carries out one edit operation

% between a source string and a target string.

edit_operation([Char | Source], [Char | Target],
Source, Target, ident, 0).

edit_operation([SChar | Source], [TChar | Target],
Source, Target, sub(SChar,TChar), 2) :-

SChar \= TChar.

edit_operation([SChar | Source], Target, Source,
Target, del(SChar), 1).

edit_operation(Source, [TChar | Target], Source,
Target, ins(TChar), 1).

Using backtracking, Prolog finds all the alignments. We imbiath the minimum
distance of 5:

2.7 Further Reading 55

?- edit_distance([l,a,n,g,u,a,9,e], [l.i,n,e,a,g,e],
E, 5).

E = [ident, sub(a, i), ident, sub(g, e), del(u),
ident, ident, ident] ;

E = [ident, sub(a, i), ident, del(g), sub(u, e),
ident, ident, ident] ;
E = [ident, sub(a, i), ident, del(g), del(u), ins(e),

ident, ident, ident]

with 15 possible alignments in total. Figure 2.6.3 showdfitise and third ones.

First alignment Third alignment

|l anguage |l anguage

L LT 77

Without epsilon symbols | i n e age l'i neage
|l anguage I\angUsaTe
With epsilonsymbols | i neeage l'i neegeage

Fig. 2.11. Alignments oflineageand language The figure contains two possible represen-
tations of them. In the upper row, the deletions in the sostdag are in italics, as are the
insertions in the target string. The lower row shows a syomized alignment, where dele-
tions in the source string as well as the insertions in thgetastring are aligned with epsilon
symbols (hull symbols).

We can apply this Prolog search program alone to find the exérite. We avoid
going an infinite path with an iterative deepening. We stdith an edit distance of 0
(theCost parameter) and we increment it — 1, 2, 3, 4 — until we find theimmim
edit distance. The first searches will fail, and the first dra¢ succeeds corresponds
to the minimum distance.

2.7 Further Reading

Corpora are now easy to obtain. Organizations such as thguisiic Data Con-
sortium and ELRA collect and distribute texts in many larges Although not

56 2 Corpus Processing Tools

widely cited, the first fiction corpus with more than 100 noilliwords was probably
FranText, which helped write tHErésor de la langue francaisgmbs 1971-1994).
Other early corpora include the Bank of English, which ciboted to theCollins
COBUILD Dictionary(Sinclair 1987).

Text and corpus analysis are an active focus of researchmpuetational lin-
guistics. They include the description of word distribndhat were theorized at the
beginning of the 20th century by Bloomfield and followersIsias Harris (1962).
Paradoxically, natural language processing conducteainpater scientists largely
ignored corpora until the 1990s, when it rediscovered teghes routinely used in
humanities. For a short history, see Zampolli (2003).

Roche and Schabes (1997, Chap. 1) is a concise and cleaduntian to
automata theory. It makes an extensive use of mathematitations, however.
Hopcroft et al. (2001) is a standard and comprehensive dektlon automata and
regular expressions. Friedl (2002) is a thorough presentaf regular expressions
oriented toward applications and programming techniques.

Although the idea of automata underlies some mathemalieattes of the 19th
century such as those of Markov, Gddel, or Turing, Kleen&g) Qvas first to give
a formal definition. He also proved the equivalence betwegunlar expressions and
FSA. Thompson (1968) was the first to implement a widely usktheembedding
a regular expression tool: Global/Regular ExpressiontPoetter known agrep .

There are several FSA toolkits available from the Interfibe FSA utilities (van
Noord and Gerdemann 2001) is a Prolog package to manipelgidar expressions,
automata, and transducers (odur.let.rug.nl/"vannoeedjFThe FSM library (Mohri
et al. 1998) is another set of tools (www.research.att.sasdols/fsm/). Both in-
clude rational operations — union, concatenation, clggexersal — and equivalence
transformation <-elimination, determinization, and minimization.

Exercises

2.1.Implement the automaton in Fig. 2.5.

2.2.Implement a Prolog program to automatically construct @nraaton to search
a given input string.

2.3.Write a regular expression that finds occurrencdsosfourandhonorin a text.

2.4.Write a regular expression that finds lines containing @&lvwbwelsa, g, i, o, u,
in that order.

2.5. Write a regular expression that finds lines consisting oflgttersa, b, or c.

2.6. List the strings generated by the expressions:

(ab) *c
(a) =*c
(alb) *
alb x|(alb) =*a
albc =d

2.7 Further Reading 57

2.7.Complement the Prolog concordance program to sort the keesrding to
words appearing on the right of the string to search.

2.8.Write the iterative deepening search in Prolog to find theimiim edit distance.

