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Corpus Processing Tools

2.1 Corpora

A corpus, plural corpora, is a collection of texts or speech stored in an electronic
machine-readable format. A few years ago, large electroniccorpora of more than
a million of words were rare, expensive, or simply not available. At present, huge
quantities of texts are accessible in many languages of the world. They can easily be
collected from a variety of sources, most notably the Web, where corpora of hundreds
of millions of words are within the reach of most computational linguists.

2.1.1 Types of Corpora

Some corpora focus on specific genres, law, science, novels,news broadcasts, tran-
scriptions of telephone calls, or conversations. Others try to gather a wider variety of
running texts. Texts collected from a unique source, say from scientific magazines,
will probably be slanted toward some specific words that do not appear in everyday
life. Table 2.1 compares the most frequent words in the book of Genesis and in a col-
lection of contemporary running texts. It gives an example of such a discrepancy. The
choice of documents to include in a corpus must then be variedto survey compre-
hensively and accurately a language usage. This process is referred to as balancing a
corpus.

Balancing a corpus is a difficult and costly task. It requirescollecting data from a
wide range of sources: fiction, newspapers, technical, and popular literature. Bal-
anced corpora extend to spoken data. The Linguistic Data Consortium from the
University of Pennsylvania and The European Language Resources Association
(ELRA), among other organizations, distribute written andspoken corpus collec-
tions. They feature samples of magazines, laws, parallel texts in English, French,
German, Spanish, Chinese, telephone calls, radio broadcasts, etc.

In addition to raw texts, some corpora are annotated. Each oftheir words is la-
beled with a linguistic tag such as a part of speech or a semantic category. The an-
notation is done either manually or semiautomatically. Spoken corpora contain the
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Table 2.1.List of the most frequent words in present texts and in the book of Genesis. After
Crystal (1997).

English French German
Most frequent words in a collection the de der
of contemporary running texts of le (article) die

to la (article) und
in et in
and les des

Most frequent words in Genesis and et und
the de die
of la der
his à da
he il er

transcription of spoken conversations. This transcription may be aligned with the
speech signal and sometimes includes prosodic annotation:pause, stress, etc. Anno-
tation tags, paragraph and sentence boundaries, parts of speech, syntactic or semantic
categories follow a variety of standards, which are called markup languages.

Among annotated corpora, treebanks deserve a specific mention. They are col-
lections of parse trees or more generally syntactic structures of sentences. The pro-
duction of a treebank generally requires a team of linguiststo parenthesize the con-
stituents of a corpus or to arrange them in a structure. Annotated corpora require a
fair amount of handwork and are therefore more expensive than raw texts. Treebanks
involve even more clerical work and are relatively rare. ThePenn Treebank (Mar-
cus et al. 1993) from the University of Pennsylvania is a widely cited example for
English.

A last word on annotated corpora: in tests, we will benchmarkautomatic methods
against manual annotation, which is often called the Gold Standard. We will assume
the hand annotation perfect, although this is not true in practice. Some errors slip into
hand-annotated corpora, even in those of the best quality, and the annotators may not
agree between them. The scope of agreement varies dependingon the annotation
task. The inter-annotator agreement is high for parts of speech. It is lower when
annotating the sense of a word.

2.1.2 Corpora and Lexicon Building

Lexicons and dictionaries are intended to give word lists, to provide a reader with
word senses and meanings, and to outline their usage. Dictionaries’ main purpose
is related to lexical semantics. Lexicography is the science of building lexicons and
writing dictionaries. It uses electronic corpora extensively.

The basic data of a dictionary is a word list. Such lists can bedrawn manually
or automatically from corpora. Then, lexicographers writethe word definitions and
choose citations illustrating the words. Since most of the time current meanings are
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obvious to the reader, meticulous lexicographers tended tocollect examples – cita-
tions – reflecting a rare usage. Computerized corpora can help lexicographers avoid
this pitfall by extracting all the citations that exemplifya word. An experienced lexi-
cographer will then select the most representative examples that reflect the language
with more relevance. S/he will prefer and describe more frequent usage and possibly
set aside others.

Finding a citation involves sampling a fragment of text surrounding a given word.
In addition, the context of a word can be more precisely measured by finding recur-
rent pairs of words, or most frequent neighbors. The first process results in concor-
dance tables, and the second one in collocations.

Concordance tables were first produced for antiquity and religious studies.
Hugues de Saint Cher is known to have compiled the first Bible concordance in the
thirteenth century. Concordances consist of text excerptscentered on a specific word
and surrounded by a limited number of words before and after it (Table 2.2). Other
more elaborate concordances take word morphology into account or group words
together into semantic themes. Sœur Jeanne d’Arc (1970) produced an example of
such a concordance for Bible studies.

Table 2.2.Concordance ofmiracle in the Gospel of John.

Language Concordances
English s beginning of miracles did Je

n they saw the miracles which
n can do these miracles that t
ain the second miracle that Je
e they saw his miracles which

French le premier des miracles que fi
i dirent: Quel miracle nous mo
om, voyant les miracles qu’il
peut faire ces miracles que tu
s ne voyez des miracles et des

German ist das erste Zeichen, das Je
du uns für ein Zeichen, daß du
en, da sie die Zeichen sahen,
emand kann die Zeichen tun, di
Wenn ihr nicht Zeichen und Wun

Concordancing is a powerful tool to study usage patterns andto write definitions.
It also provides evidences on certain preferences between verbs and prepositions, ad-
jectives and nouns, recurring expressions, or common syntactic forms. These couples
are referred to ascollocations. Church and Mercer (1993) cite a striking example of
idiosyncratic collocations ofstrongandpowerful. While strongandpowerfulhave
similar definitions, they occur in different contexts, as shown in Table 2.3.

Table 2.4 shows additional collocations ofstrongandpowerful. These word pref-
erences cannot be explained using rational definitions, butcan be observed in cor-
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Table 2.3.Comparingstrongandpowerful.

English French German
You say Strong tea Thé fort Kräftiger Tee

Powerful computer Ordinateur puissant Starker Computer
You don’t say Strong computer Thé puissant Starker Tee

Powerful tea Ordinateur fort Kräftiger Computer

pora. A variety of statistical tests can measure the strength of pairs, and we can
extract them automatically from a corpus.

Table 2.4.Word preferences ofstrongandpowerfulcollected from the Associated Press cor-
pus. Numbers in columns indicate the number of collocation occurrences with wordw. After
Church and Mercer (1993).

Preference forstrongover powerful Preference forpowerful over strong
strongw powerfulw w strongw powerfulw w

161 0 showing 1 32 than
175 2 support 1 32 figure
106 0 defense 3 31 minority
...

2.1.3 Corpora as Knowledge Sources for the Linguist

In the beginning of the 1990s, computer-based corpus analysis completely renewed
empirical methods in linguistics. It helped design and implement many of the tech-
niques presented in this book. As we saw with dictionaries, corpus analysis helps
lexicographers acquire lexical knowledge and describe language usage. More gener-
ally, corpora enable us to experiment with tools and to confront theories on real data.
For most language analysis programs, collecting relevant corpora of texts has then
become a necessary step to define specifications and measure performances. Let us
take the examples of part-of-speech taggers, parsers, and dialogue systems.

Annotated corpora are essential tools to develop part-of-speech taggers or parsers.
A first purpose is to measure the tagging or parsing performance. The tagger or parser
is run on texts and their result is compared to hand annotation, which serves as a ref-
erence. A linguist or an engineer can then determine the accuracy, the robustness of
an algorithm or a parsing model and see how well it scales up byapplying it to a
variety of texts.

A second purpose of annotated corpora is to be a knowledge source to refine tag-
ging techniques and improve grammars. While developing a grammar, a linguist can
see if changing a rule improves or deteriorates results. Thetool tuning is then done
manually. Using statistical techniques, annotated corpora also enable researchers to
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acquire grammar rules or language models automatically or semiautomatically to tag
or parse a text. We will see this in Chap. 7.

A dialogue corpus between a user and a machine is also critical to develop an
interactive spoken system. The corpus is usually collectedthrough fake dialogues
between a real user and a person simulating the machine answers. Repeating such
experiments with a reasonable number of users enables us to acquire a text set cov-
ering what the machine can expect from potential users. It isthen easier to determine
the vocabulary of an application, to have a precise idea of word frequencies, and
to know the average length of sentences. In addition, the dialogue corpus enables
the analyst to understand what the user expects from the machine, that is, how s/he
interacts with it.

2.2 Finite-State Automata

2.2.1 A Description

The most frequent operation we do with corpora consists in searching words or
phrases. To be convenient, search must extend beyond fixed strings. We may want
to search a word or its plural form, uppercase or lowercase letters, expressions con-
taining numbers, etc. This is made possible using finite-state automata (FSA) that we
introduce now. FSA are flexible tools to process texts and oneof the most adequate
to search strings.

FSA theory was designed in the beginning of computer scienceas a model of
abstract computing machines. It forms a well-defined formalism that has been tested
and used by generations of programmers. FSA stem from a simple idea. These are
devices that accept – recognize – or reject an input stream ofcharacters. FSA are very
efficient in terms of speed and memory occupation and are easyto implement in Pro-
log. In addition to text searching, they have many other applications: morphological
parsing, part-of-speech annotation, and speech processing.

Figure 2.1 shows a three-state automaton numbered from 0 to 2, where state
q0 is called the start state andq2 the final state. An automaton has a single start
state and any number of final states, indicated by double circles. Arcs between states
designate the possible transitions. Each arc is annotated by a label, which means that
the transition accepts or generates the corresponding character.

An automaton accepts an input string in the following way: itstarts in the ini-
tial state, follows a transition where the arc character matches the first character of
the string, consumes the corresponding string character, and reaches the destination
state. It makes then a second transition with the second string character and contin-
ues in this way until it ends up in one of the final states and there is no character left.
The automaton in Fig. 2.1 accepts or generates strings such as:ac, abc, abbc, abbbc,
abbbbbbbbbbbbc, etc. If the automaton fails to reach a final state, either because it has
no more characters in the input string or because it is trapped in a nonfinal state, it
rejects the string.
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q0 q1 q2

a c

b

Fig. 2.1.A finite-state automaton.

As an example, let us see how the automaton accepts stringabbc and rejects
abbcb. The inputabbc is presented to the start stateq0. The first character of the string
matches that of the outgoing arc. The automaton consumes charactera and moves to
stateq1. The remaining string isbbc. Then, the automaton loops twice on stateq1 and
consumesbb. The resulting string is characterc. Finally, the automaton consumesc
and reaches stateq2, which is the final state. On the contrary, the automaton does
not accept stringabbcb. It moves to statesq0, q1, andq2, and consumesabbc. The
remaining string is letterb. Since there is no outgoing arc with a matching symbol,
the automaton is stuck in stateq2 and rejects the string.

Automata may containε-transitions from one state to another. In this case, the
automaton makes a transition without consuming any character of the input string.
The automaton in Fig. 2.2 accepts stringsa, ab, abb, etc. as well asac, abc, abbc, etc.

q0 q1 q2

a c

ε

b

Fig. 2.2.A finite-state automaton with anε-transition.

2.2.2 Mathematical Definition of Finite-State Automata

FSA have a formal definition. An FSA consists of five components(Q,Σ, q0, F, δ),
where:

1. Q is a finite set of states.
2. Σ is a finite set of symbols or characters: the input alphabet.
3. q0 is the start state,q0 ∈ Q.
4. F is the set of final states,F ⊆ Q.
5. δ is the transition functionQ × Σ → Q, whereδ(q, i) returns the state where

the automaton moves when it is in stateq and consumes the input symboli.
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The quintuple defining the automaton in Fig. 2.1 isQ = {q0, q1, q2}, Σ =
{a, b, c}, F = {q2}, and δ = {δ(q0, a) = q1, δ(q1, b) = q1, δ(q1, c) = q2}. The
state-transition table in Table 2.5 is an alternate representation of theδ function.

Table 2.5.A state-transition table where∅ denotes nonexisting or impossible transitions.

State\Input a b c

q0 q1 ∅ ∅
q1 ∅ q1 q2
q2 ∅ ∅ ∅

2.2.3 Finite-State Automata in Prolog

A finite-state automaton has a straightforward implementation in Prolog. It is merely
the transcription of the quintuplet definition. The following code describes the tran-
sitions, the start, and the final states of the automaton in Fig. 2.1:

% The start state
start(q0).

% The final states
final(q2).

% The transitions
% transition(SourceState, Symbol, DestinationState)
transition(q0, a, q1).
transition(q1, b, q1).
transition(q1, c, q2).

The predicateaccept/1 selects the start state and runs the automaton using
accept/2 . The predicateaccept/2 is recursive. It succeeds when it reaches a
final state, or consumes a symbol of the input string and makesa transition otherwise.

accept(Symbols) :-
start(StartState),
accept(Symbols, StartState).

% accept(+Symbols, +State)
accept([], State) :-

final(State).
accept([Symbol | Symbols], State) :-

transition(State, Symbol, NextState),
accept(Symbols, NextState).
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accept/1 either accepts an input symbol string or fails:

?- accept([a, b, b, c]).
Yes

?- accept([a, b, b, c, b]).
No

The automaton in Fig. 2.2 containsε-transitions. They are introduced in the
database as facts:

epsilon(q1, q2).

To take them into account, theaccept/2 predicate should be modified so that there
are two possible sorts of transitions. A first rule consumes acharacter and a second
one, corresponding to anε-transition, passes the string unchanged to the next state:

accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).

accept(Symbols, State) :-
epsilon(State, NextState),
accept(Symbols, NextState).

2.2.4 Deterministic and Nondeterministic Automata

The automaton in Fig. 2.1 is said to be deterministic (DFSA) because given a state
and an input, there is one single possible destination state. On the contrary, a non-
deterministic automaton (NFSA) has states where it has a choice: the path is not
determined in advance.

Figure 2.3 shows an example of an NFSA that accepts the stringsab, abb, abbb,
abbbb, etc. Takingabb as input, the automaton reaches the stateq1 consuming the
letter a. Then, it has a choice between two states. The automaton can either move
to stateq2 or stay in stateq1. If it first moves to stateq2, there will be one character
left and the automaton will fail. The right path is to loop onto q1 and then to move to
q2. ε-transitions also cause automata to be nondeterministic asin Fig. 2.2 where any
string that has reached stateq1 can also reach stateq2.

A possible strategy to deal with nondeterminism is to use backtracking. When
an automaton has the choice between two or more states, it selects one of them and
remembers the state where it made the decision: the choice point. If it subsequently
fails, the automaton backtracks to the choice point and selects another state to go to.
In our example in Fig. 2.3, if the automaton moves first to state q2 with the string
bb, it will end up in a state without outgoing transition. It will have to backtrack and
select stateq1. Backtracking is precisely the strategy that Prolog uses automatically.
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q0 q1 q2

a b

b

Fig. 2.3.A nondeterministic automaton.

2.2.5 Building a Deterministic Automata from a Nondeterministic One

Although surprising, any nondeterministic automaton can be converted into an equiv-
alent deterministic automaton. We outline here an informaldescription of the deter-
minization algorithm. See Hopcroft et al. (2001) for a complete description of this
algorithm.

The algorithm starts from an NFSA(QN , Σ, q0, FN , δN ) and builds an equiva-
lent DFSA(QD, Σ, {q0}, FD, δD), where:

• QD is the set of all the possible state subsets ofQN . It is called the power set. The
set of states of the automaton in Fig. 2.3 isQN = {q0, q1, q2}. The corresponding
set of sets isQD = {∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}}.
If QN hasn states,QD will have2n states. In general, many of these states will
be inaccessible and will be discarded.

• FD is the set of sets that include at least one final state ofFN . In our example,
QD = {{q2}, {q0, q2}, {q1, q2}, {q0, q1, q2}}.

• For each setS ⊂ QN and for each input symbola, δD(S, a) =
δN (s,a)

⋃

s∈S

. The

state-transition table in Table 2.6 represents the automaton in Fig. 2.3. Table 2.7
represents the determinized version of it.

Table 2.6.The state-transition table of the nondeterministic automaton shown in Fig. 2.3.

State\Input a b

q0 q1 ∅
q1 ∅ q1, q2
q2 ∅ ∅

2.2.6 Searching a String with a Finite-State Automaton

Searching the occurrences of a string in a text corresponds to recognizing them with
an automaton, where the string characters label the sequence of transitions. However,
the automaton must skip chunks in the beginning, between theoccurrences, and at
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Table 2.7.The state-transition table of the determinized automaton in Fig. 2.3.

State\Input a b

∅ ∅ ∅
{ q0} { q1} ∅
{ q1} ∅ { q1, q2}
{ q2} ∅ ∅
{ q0, q1} { q1} { q1, q2}
{ q0, q2} { q1} ∅
{ q1, q2} ∅ { q1, q2}
{ q0, q1, q2} { q1} { q1, q2}

the end of the text. The automaton consists then of a core accepting the searched
string and of loops to process the remaining pieces. Consider again the automaton in
Fig. 2.1 and modify it to search stringsac, abc, abbc, abbbc, etc., in a text. We add
two loops: one in the beginning and the other to come back and start the search again
(Fig. 2.4).

q0 q1 q2

a c

ε

Σ b

Fig. 2.4.Searching stringsac, abc, abbc, abbbc, etc.

In doing this, we have built an NFSA that it is preferable to convert into a DFSA.
Hopcroft et al. (2001) describe the mathematical properties of such automata and an
algorithm to automatically build an automaton for a given set of patterns to search.
They notably report that resulting DFSA have exactly the same number of states as
the corresponding NFSA. We present an informal solution to determine the transi-
tions of the automaton in Fig. 2.4.

If the input text does not begin with ana, the automaton must consume the be-
ginning characters and loop on the start state until it finds one. Figure 2.5 expresses
this with an outgoing transition from state 0 to state 1 labeled with ana and a loop
for the rest of the characters.Σ − a denotes the finite set of symbols excepta. From
state 1, the automaton proceeds if the text continues with either ab or a c. If it is
an a, the precedinga is not the beginning of the string, but there is still a chance
because it can start again. It corresponds to the second loopon state 1. Otherwise, if
the next character falls in the setΣ − {a, b, c}, the automaton goes back to state 0.
The automaton successfully recognizes the string if it reaches state 2. Then it goes
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back to state 0 and starts the search again, except if the nextcharacter is ana, for
which it can go directly to state 1.

q0 q1 q2

a c

a

Σ − a

Σ − {a, b, c}

Σ − a b

a

Fig. 2.5.An automaton to search stringsac, abc, abbc, abbbc, etc., in a text.

2.2.7 Operations on Finite-State Automata

FSA can be combined using a set of operations. The most usefulare the union, the
concatenation, and the closure.

The union or sum of two automataA andB accepts or generates all the strings
of A and all the strings ofB. It is denotedA ∪ B. We obtain it by adding a new
initial state that we link to the initial states ofA andB (Fig. 2.6) usingε-transitions
(Fig. 2.7).

q0 q1

q2

q3

a c

b

b

q0 q1 q2

a c

b

Fig. 2.6.AutomataA (left) andB (right).

The concatenation or product ofA andB accepts all the strings that are concate-
nations of two strings, the first one being accepted byA and the second one byB. It
is denotedA.B. We obtain the resulting automaton by connecting all the final states
of A to the initial state ofB usingε-transitions (Fig. 2.8).

The iteration or Kleene closure of an automatonA accepts the concatenations
of any number of its strings and the empty string. It is denoted A∗, whereA∗ =
{ε} ∪ A ∪ A.A ∪ A.A.A ∪ A.A.A.A ∪ . . .. We obtain the resulting automaton by
linking the final states ofA to its initial state usingε-transitions and adding a new
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q′0

q0 q1

q2

q3

a c

b

b

q0 q1 q2

a c

b
ε

ε

Fig. 2.7.The union of two automata:A ∪B.

q0 q1

q2

q3

a c

b

b

q0 q1 q2

a c

b

ε

ε

Fig. 2.8.The concatenation of two automata:A.B.

initial state, as shown in Fig. 2.9. The new initial state enables us to obtain the empty
string.

q′0 q0 q1

q2

q3

ε

a c

b

ε

ε

b

Fig. 2.9.The closure ofA.

The notationΣ∗ designates the infinite set of all possible strings generated from
the alphabetΣ. Other significant operations are:
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• The intersection of two automataA∩B that accepts all the strings accepted both
by A and byB. If A = (Σ,Q1, q1, F1, δ1) andB = (Σ,Q2, q2, F2, δ2), the
resulting automaton is obtained from the Cartesian productof states(Σ,Q1 ×
Q2, 〈q1, q2〉 , F1×F2, δ3) with the transition functionδ3(〈s1, s2〉 , i) = {〈t1, t2〉 |
t1 ∈ δ1(s1, i) ∧ t2 ∈ δ2(s2, i)}.

• The difference of two automataA−B that accepts all the strings accepted byA
but not byB.

• The complementation of the automatonA in Σ∗ that accepts all the strings that
are not accepted byA. It is denotedĀ, whereĀ = Σ∗ −A.

• The reversal of the automatonA that accepts all the reversed strings accepted by
A.

Two automata are said to be equivalent when they accept or generate exactly the
same set of strings. Useful equivalence transformations optimize computation speed
or memory requirements. They include:

• ε-removal, which transforms an initial automaton into an equivalent one without
ε-transitions

• determinization, which transforms a nondeterministic automaton into a determin-
istic one

• minimization, which determines among equivalent automata the one that has the
smallest number of states

Optimization algorithms are out of the scope of this book. Hopcroft et al. (2001) as
well as Roche and Schabes (1997) describe them in detail.

2.3 Regular Expressions

The automaton in Fig. 2.1 generates or accepts strings composed of onea, zero or
moreb’s, and onec. We can represent this set of strings using a compact notation:
ab* c , where the star symbol means any number of the preceding character. Such a
notation is called a regular expression or regex. Regular expressions are very power-
ful devices to describe patterns to search in a text. Although their notation is different,
regular expressions can always be implemented under the form of automata, and vice
versa. However, regular expressions are generally easier to use.

Regular expressions are composed of literal characters, that is, ordinary text char-
acters likeabc , and of metacharacters like* that have a special meaning. The sim-
plest form of regular expressions is a sequence of literal characters: letters, numbers,
spaces, or punctuation signs. Regexesregular or Prolog match stringsregular
or Prolog contained in a text. Table 2.8 shows examples of pattern matching with
literal characters. Regular expressions are case-sensitive and match the first instance
of the string or all its instances in a text, depending on the regex language that is
used.

There are currently a dozen major regular expression languages freely available.
Their common ancestor isgrep , which stands for global/regular expression/print.
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Table 2.8.Examples of simple patterns and matching results.

Pattern String
regular “A section on regularexpressions”
Prolog “The Prologlanguage”
the “The book of thelife”

grep is a standard Unix tool that prints out all the lines of a file that contain a
given pattern. Thegrep user interface conforms to the Unix command-line style.
It consists of the command name, heregrep , options, and the arguments. The first
argument is the regular expression delimited by single straight quotes. The next ar-
guments are the files where to search the pattern:

grep ’regular expression’ file1 file2 ... filen

The Unix command:

grep ’abc’ myFile

prints all the lines of filemyFile containing the stringabc and

grep ’ab * c’ myFile1 myFile2

prints all the lines of filemyFile1 andmyFile2 containing the stringsac, abc,
abbc, abbbc, etc.

grep had a considerable influence on its followers. Most of them adhere to a
comparable syntax. Among the most popular languages featuring regexes now are
Perl and Python, Java, and C#. In the following sections, thedescription of the syn-
tactic features refers toegrep , which is a modern version ofgrep available for
most operating systems.

2.3.1 Repetition Metacharacters

We saw that the metacharacter* expressed a repetition of zero or more characters,
as inab* c . Other characters that describe repetitions are the question mark,?, the
plus,+, and the dot,. (Table 2.9). The star symbol is also called the closure operator
or the Kleene star.

If the pattern to search contains a character that is also a metacharacter, for in-
stance, “?”, we need to indicate it to the regex engine using abackslash\ before it.
We saw thatabc? matchesab andabc. The expressionabc \? matches the string
abc?. In the same vein,abc \. matches the stringabc., anda\* bc matchesa*bc.
The backslash is also called the escape character. It transforms a metacharacter into
a literal symbol. In most regex languages, we must quote characters. , ?, ( , ) , [ , ] ,
{ , } , * , +, | , ˆ , $, and\ to search them literally.
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Table 2.9.Repetition metacharacters.

Metachars Descriptions Examples
* Matches any number of occurrences

of the previous character – zero or
more

ac * e matches stringsae , ace ,
acce , accce , etc. as in “The aerial
acceleration alerted the acepilot”

? Matches at most one occurrence of
the previous characters – zero or one

ac?e matchesae and ace as in
“The aerial acceleration alerted the
acepilot”

+ Matches one or more occurrences of
the previous characters

ac+e matches ace , acce ,
accce , etc. as in as in “The
aerial acceleration alerted the ace
pilot”

{n} Matches exactlyn occurrences of the
previous characters

ac{2}e matchesacce as in “The
aerial acceleration alerted the ace pi-
lot”

{n,} Matchesn or more occurrences of the
previous characters

ac{2,}e matchesacce , accce ,
etc.

{n,m} Matches fromn tom occurrences of
the previous characters

ac{2,4}e matchesacce , accce ,
andacccce .

. Matches one occurrence of any char-
acters of the alphabet except the new
line character

a.e matchesaae , aAe, abe , aBe,
a1e , etc. as in “The aerial accelera-
tion alerted the acepilot”

. * Matches any string of characters and
until it encounters a new line charac-
ter

2.3.2 The Longest Match

The description of repetition metacharacters in Table 2.9 sometimes makes string
matching ambiguous, as with the stringaabbc and the regexa+b* , which has six
possible matches:a, aa, ab, aab, abb, andaabb. In fact, matching algorithms use two
rules that are common to all the regex languages:

1. They match as early as they can in a string.
2. They match as many characters as they can.

Hence,a+b* matchesaabb, which is the longest possible match. The matching
strategy of repetition metacharacters is said to be greedy.

In some cases, the greedy strategy is not appropriate. To display the sentence

They matchas earlyandas manycharacters as they can.

in a Web page with two phrases set in bold, we need specific tagsthat we will insert
in the source file. Using HTML, the language of the Web, the sentence will probably
be annotated as
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They match <b>as early</b> and <b>as many</b>
characters as they can.

where<b> and</b> mark respectively the beginning and the end of a phrase set in
bold. (We will see annotation frameworks in more detail in Chap. 3.)

A regular expression to search and extract phrases in bold could be:

<b>. * </b>

Unfortunately, applying this regex to the sentence will match one single string:

<b>as early</b> and <b>as many</b>

which is not what we wanted. In fact, this is not a surprise. Aswe saw, the regex
engine matches as early as it can, i.e., from the first<b> and as many characters as
it can up to the second</b> .

A possible solution is to modify the behavior of repetition metacharacters and
make them “lazy.” They will then consume as few characters aspossible. We create
the lazy variant of a repetition metacharacter by appendinga question mark to it
(Table 2.10). The regex

<b>. * ?</b>

will then match the two intended strings,

<b>as early</b> and<b>as many</b> .

Table 2.10.Lazy metacharacters.

Metachars Descriptions

* ? Matches any number of occurrences of the previous character– zero or more
?? Matches at most one occurrence of the previous characters – zero or one
+? Matches one or more occurrences of the previous characters
{n}? Matches exactlyn occurrences of the previous characters
{n,}? Matchesn or more occurrences of the previous characters
{n,m}? Matches fromn tom occurrences of the previous characters

2.3.3 Character Classes

We saw that the dot,. , represents any character of the alphabet. It is possible tode-
fine smaller subsets orclasses. A list of characters between square brackets[...]
matches any character contained in the list.[abc] means one occurrence of eithera,
b, or c . [ABCDEFGHIJKLMNOPQRSTUVWXYZ]means one uppercase unaccented
letter, and[0123456789] means one digit. We can concatenate character classes,
literal characters, and metacharacters, as in the expressions[0123456789]+ and
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[0123456789]+ \.[0123456789]+ , that match respectively integers and dec-
imal numbers.

Character classes are useful to search patterns with spelling differences, such as
[Cc]omputer [Ss]cience , which matches four different strings:

Computer Science
Computer science
computer Science
computer science

We can define the complement of a character class, that is, thecharacters
of the alphabet that are not member of the class, using the caret symbol,ˆ , as
the first symbol inside the angle brackets.[ˆa] means any character that is not
an a. [ˆ0123456789] means any character that is not a digit. The expression
[ˆABCD] * means any string that does not containA, B, C, or D. The caret must be
the first character after the brackets. The expression[aˆb] matches eithera, ˆ, orb.

Inside angle brackets, we can also specify ranges using the dash character- . The
expression[1-4] means any of the digits1, 2, 3, or 4, anda[1-4]b matchesa1b,
a2b, a3c, or a4b. The expression[a-zàâäæçéèêëîïôöœßùûüÿ] matches any
lowercase accented or unaccented letter of French and German. If we want to search
the dash character itself, we need to quote it as\- . The expression[1 \-4] means
any of the characters1, -, or4.

Most regex languages have also predefined classes. Table 2.11 lists some useful
ones. Some classes may be specific to one regex language. In case of doubt, refer to
the corresponding manual.

2.3.4 Nonprintable Symbols or Positions

Some metacharacters match positions and nonprintable symbols. Positions oran-
chors enable one to search a pattern with a specific location in a text. They encode
the start and end of a line, using respectively the caret,ˆ , and the dollar,$.

The expression̂Chapter matches lines beginning withChapterand[0-9]+$
matches lines ending with a number. We can combine both inˆChapter [0-9]+$
that matches lines consisting only of theChapterword and a number asChapter 3,
for example.

The command line

egrep ’^[aeiou]+$’ myFile

matches lines ofmyFile containing only vowels.
Similarly, metacharacters\< and \> match the start and end of a word. The

expression\<ace matchesacesandacetylenebut notplace. Conversely,ace \>
matchesplace but neitheracesnor acetylene. The expression\<act \> matches
exactly the wordact and notreact or acted. Table 2.12 summarizes anchors and
some nonprintable characters.

In Perl, word boundaries are indicated by\b instead of\< and \>, as in
\bact \b.
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Table 2.11.Predefined character classes.

Expressions Descriptions Examples
\d Any digit. Equivalent to[0-9] A \dC matchesA0C, A1C, A2C,

A3Cetc.
\D Any nondigit. Equivalent to[ˆ0-9]
\w Any word character: letter, digit,

or underscore. Equivalent to
[a-zA-Z0-9_]

1\w2 matches1a2 , 1A2, 1b2 ,
1B2, etc

\W Any nonword character. Equivalent to
[ˆ \w]

\s Any white space character: space, tab-
ulation, new line, form feed, carriage
return, or backspace.

\S Any nonwhite space character.
Equivalent to[ˆ \s]

[:alpha:] Any alphabetic character. It includes
accented characters

1[:alpha:]2 matches 1a2 ,
1A2, 1b2 , 1B2, etc.

[:digit:] Any digit A[:digit:]C matches A0C,
A1C, A2C, A3Cetc.

[:upper:] Any uppercase character. It includes
accented characters

A[:upper:]C matches AAC,
ABC, ACC, ADCetc.

[:lower:] Any lowercase character. It includes
accented characters

A[:lower:]C matches AaC,
AbC, AcC, AdCetc.

Table 2.12.Some metacharacters matching nonprintable characters.

Metachars Descriptions Examples
ˆ Matches the start of a line ˆab * c matchesac , abc , abbc , abbbc , etc.

when they are located at the beginning of a new
line

$ Matches the end of a line ab?c$ matchesac andabc when they are lo-
cated at the end of a line

\< Matches the start of a word\<abc matchesabcd but notdabc
\> Matches the end of a wordbcd \> matchesabcd but notabcde
\n Matches a new line a\nb matches

a
b

\t Matches a tabulation –
\r Matches the carriage return

character
–

\f Matches the form feed char-
acter

–

\e Matches the escape charac-
ter

–

\a Matches the bell character –
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2.3.5 Union and Boolean Operators

We reviewed the basic constructs to write regular expressions. A powerful feature
is that we can also combine expressions with operators, as with automata. Using a
mathematical term, we say that they define an algebra. Using asimpler analogy, this
means that we can arrange regular expressions just like arithmetic expressions. This
greatly eases the design of complex expressions and makes them very versatile.

Regex languages use three main operators. Two of them are already familiar to
us. The first one is the Kleene star or closure, denoted* . The second one is the con-
catenation, which is usually not represented. It is implicit in strings likeabc , which
is the concatenation of charactersa, b, andc. To concatenate the wordcomputer, a
space symbol, andscience, we just write them in a row:computer science .

The third operation is the union and is denoted “|”. The expressiona|b means
eithera or b. We saw that the regular expression[Cc]omputer [Ss]cience
could match four strings. We can rewrite an equivalent expression using the union
operator:Computer Science |Computer science |computer Science |
computer science . A union is also called an alternation because the corre-
sponding expression can match any of the alternatives, herefour.

2.3.6 Operator Combination and Precedence

Regular expressions and operators are grouped using parentheses. If we omit them,
expressions are governed by rules of precedence and associativity. The expression
a|bc matches the stringsa andbc because the concatenation operator takes prece-
dence over the union. In other words, the concatenation binds the characters stronger
than the union. If we want an expression that matches the stringsac andbc, we need
parentheses(a |b)c .

Let us examine another example of precedence. We rewrote theexpression
[Cc]omputer [Ss]cience using a union of four strings. Since the difference
between expressions lies in the first letters only, we can tryto revise this union into
something more compact. The character class[Cc] is equivalent to the alternation
C|c , which matches eitherC or c. A tentative expression could then beC|computer
S|science . But it would not match the desired strings; it would find occurrences of
eitherC, computer S, orsciencebecause of the operator precedence. We need paren-
theses to group the alternations(C |c)omputer (S |s)cience and thus match
the four intended strings.

The order of precedence of the three main operators union, concatenation, and
closure is as follows:

1. closure and other repetition operator (highest)
2. concatenation, line and word boundaries
3. union (lowest)

This entails thatabc * describes the setab, abc, abcc, abccc, etc. To repeat the
patternabc, we need parentheses. And the expression(abc) * corresponds toabc,
abcabc, abcabcabc, etc.
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2.4 Programming with Regular Expressions

2.4.1 Perl

grep andegrep are tools to search patterns in texts. If we want to use them for
more elaborate text processing such as translating characters, substituting words,
counting them, we need a full-fledged programming language,for example, Perl,
Python, AWK, and Java with itsjava.util.regex package. They enable the
design of powerful regular expressions and at the same time,they are complete pro-
gramming languages. This section intends to give you a glimpse of Perl program-
ming. We discuss features of Perl in this chapter and the nextone. Further references
include Wall et al. (2000) and Schwartz and Phoenix (2001).

2.4.2 Matching

Perl has constructs similar to those of the C language. It hasanalogous control flow
statements, and the assignment operator is denoted=. However, variables begin with
a dollar sign and are not typed. Comments start with the# symbol. The short program

# A first program
$integer = 30;
$pattern = "My string";
print $integer, " ", $pattern, "\n";

prints the line

30 My string

We run it with the command:

perl -w program.pl

where the option-w asks Perl to check syntax errors.
The next program reads the input line and searches the expression ab* c . If it

finds the expression, it prints the line:

while ($line = <>) {
if ($line =~ m/ab * c/) {

print $line;
}

}

The program uses repeat and conditional statements. The symbol <> designates
the standard input, and the instruction$line = <> assigns the current line from
the input to the$line variable. Thewhile instruction reads all the lines until it
encounters an end of file. Them/.../ instruction delimits the regular expression
to match, and the=˜ operator instructs Perl to search it in the$line variable. If
the expression matches a string in$line , the =˜ operator returns true, or false
otherwise. Theif instruction tells the program to print the input when it contains
the pattern. We run the program to search the filefile_name with the command:
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perl -w program.pl file_name

The match operator supports a set of options also called modifiers. Their syntax
is m/regex/modifiers . Useful modifiers are

• Case insensitive:i . The instructionm/regex/i searchesregex in the target
string regardless of its case.

• Multiple lines: m. By default, the anchorŝ and$ match the start and the end
of the input string. The instructionm/regex/m considers the input string as
multiple lines separated by new line characters, where the anchorŝ and$ match
the start and the end of any line in the string.

• Single line:s . Normally, a dot symbol “. ” does not match new line characters.
The/s modifier makes a dot in the instructionm/regex/s match any character
including new lines.

Modifiers can be grouped in any order as inm/regex/im , for instance, or
m/regex/sm , where a dot inregex matches any character and the anchorsˆ
and$ match just after and before new line characters.

2.4.3 Substitutions

One of the powerful features of Perl is pattern substitution. It uses a construct similar
to the match instruction:s/regex/replacement/ . The instruction

$line =~ s/regex/replacement/

matches the first occurrence ofregex and replaces it byreplacement in the
$line variable. If we want to replace all the occurrences of a pattern, we use theg
modifier, whereg stands for globally:

$line =~ s/regex/replacement/g

We shall write a program to replace the occurrences ofab* c by ABCin a file
and print them. We read all the lines of the input. We use the instructionm/ab * c/
to check whether they match the regular expressionab* c . We then print the old line
and we substitute the matched pattern using the constructs/ab * c/ABC/ :

while ($line = <>) {
if ($line =~ m/ab * c/) {

print "Old: ", $line;
$line =~ s/ab * c/ABC/g;
print "New: ", $line;

}
}
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2.4.4 Translating Characters

The instructiontr/search_list/replacement_list/ replaces all the oc-
currences of the characters insearch_list by the corresponding character in
replacement_list . The instructiontr/ABC/abc/ replaces the occurrences
of A, B, andC by a, b, andc, respectively. The string

AbCdEfGhIjKlMnOpQrStUvWxYzÉö

results in

abcdEfGhIjKlMnOpQrStUvWxYzÉö

The hyphen specifies a character range, as in the instruction

$line =~ tr/A-Z/a-z/;

which converts the uppercase characters to their lowercaseequivalents. The instruc-
tion tr has useful modifiers:

• d deletes any characters of the search list that are not found in the replacement
list.

• c translates characters that belong to the complement of the search list.
• s reduces – squeezes, squashes – sequences of characters translated to an identi-

cal character to a single instance.

The instruction

$line =~ tr/AEIOUaeiou//d;

deletes all the vowels in$line and

$line =~ tr/AEIOUaeiou/\$/cs;

replaces all nonvowel characters by a$ sign. The contiguous sequences of translated
dollar signs are reduced to a single sign.

2.4.5 String Operators

Perl operators are similar to those of the C and Java languages. They are summa-
rized in Table 2.13. The string operators are notable differences. They enable us to
concatenate and compare strings.

The Boolean operatorseq (equal) andne (not equal) compare two strings. The
dot is the concatenation operator:

$string1 = "abc";
$string 2 = "def";
$string3 = $string1 . $string2;
print $string3;
#prints abcdef
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As with the C and Java operators, the shorthand notation$var1 .= $var2
is equivalent to$var1 = $var1 . $var2 . The following program reads the
content of the input line by line, concatenates it in the$text variable, and prints it:

while ($line = <>) {
$text .= $line;

}
print $text;

Table 2.13.Summary of the main Perl operators.

Unary operators ! Logical not
+ and- Arithmetic plus sign and negation

Binding operators =˜ Returns true in case of match success
!˜ Returns false in case of match success

Arithmetic operators * and/ Multiplication and division
+ and- Addition and subtraction

String operator . String concatenation

Arithmetic comparison oper-
ators

> and< Greater than and less than

>= and<= Greater than or equal and less than or equal
== and!= Equal and not equal

String comparison operators ge andle Greater than and less than
gt andlt Greater than or equal and less than or equal
eq andne Equal and not equal

Logical operators && Logical and
|| Logical or

2.4.6 Back References

It is sometimes useful to keep a reference to matched patterns or parts of them.
Let us imagine that we want to find a sequence of three identical characters, which
corresponds to matching a character and checking if the nexttwo characters are
identical to the first character. To do this, we first tell Perlto remember the matched
pattern and we put parentheses around it. It creates a bufferto hold the pattern and
we refer back to it by the sequence\1. The instructions/(.) \1\1/ \* \* \* /g
replaces these sequences by three stars.
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Perl can create as many buffers as we need. It allocates a new one when it en-
counters a left parenthesis and refers it back by references\1, \2, \3, etc. The first
pair of parentheses corresponds to\1, the second pair to\2, the third to\3, etc.
Outside the match expression the\<digit> reference is denoted by$<digit> :
$1 , $2 , $3 , etc. As an example, the next program captures occurrences of money
amounts in dollars. It prints the dollars and cents:

while ($line = <>) {
while ($line =~ m/\$ * ([0-9]+)\.?([0-9] * )/g) {

print "Dollars: ", $1, " Cents: ", $2, "\n";
}

}

2.5 Finding Concordances

2.5.1 Concordances in Prolog

Concordances of a word, an expression, or more generally anystring in a corpus
are easy to obtain with Prolog. Let us suppose that the corpusis represented as one
single big string: a list of characters. Concordancing simply consists in matching
the pattern we are searching as a substring of the whole list.There is no need to
consider the corpus structure, that is, whether it is made ofblanks, words, sentences,
or paragraphs.

We implement the search with two auxiliary predicates:prefix(+List,
+Span, -Prefix) that extracts the prefix of a list with up toSpan characters,
and prepend(+List, +Span, -PrependedList) that addsSpan vari-
ables onto the beginning of a list.

Now let us write theconcordance/4 predicate. It findsPattern in List
and returns the firstLine where it occurs.Span is the window size, for example,
15 characters to the left and to the right, within whichPattern will be displayed.
We first prependPattern with Span variables before it to match the pattern and
its right context. We find it with a combination of twoappend/3 calls; then we use
prefix/3 to extract up toSpan characters after it.

% concordance(+Pattern, +List, +Span, -Line)
% finds Pattern in List and displays the Line
% where it appears within Span characters
% surrounding it.

concordance(Pattern, List, Span, Line) :-
name(Pattern, LPattern),
prepend(LPattern, Span, LeftPattern),
append(_, Rest, List),
append(LeftPattern, End, Rest),
prefix(End, Span, Suffix),
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append(LeftPattern, Suffix, LLine),
name(Line, LLine).

% prefix(+List, +Span, -Prefix) extracts the prefix
% of List with up to Span characters.
% The second rule is to check the case where there
% are less than Span character in List.

prefix(List, Span, Prefix) :-
append(Prefix, _, List),
length(Prefix, Span),
!.

prefix(Prefix, Span, Prefix) :-
length(Prefix, L),
L < Span.

% prepend(+List. +Span, -Prefix) adds Span variables
% to the beginning of List.

prepend(Pattern, Span, List) :-
prepend(Pattern, Span, Pattern, List).

prepend(_, 0, List, List) :- !.
prepend(Pattern, Span, List, FList) :-

Span1 is Span - 1,
prepend(Pattern, Span1, [X | List], FList).

Let us apply this program to retrieve the concordances ofHelenin the Iliad. We
makeconcordance/4 backtrack until all the occurrences have been found:

?- read_file(’iliad.txt’, L), concordance(’Helen’, L,
20, C), write(C),nl, fail.

ry of still keeping Helen, for whose sake so
ry of still keeping Helen, for whose sake so
red for the sake of Helen. Nevertheless, if a
red for the sake of Helen. The men of Pylos

in their midst for Helen and all her wealth.
he midst of you for Helen and all her wealth.
nwhile Iris went to Helen in the form of her
ke the goddess, and Helen’s heart yearned aft
wood. When they saw Helen coming towards the
" "Sir," answered Helen, "father of my husb
...
No
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Because the pattern is prepended with exactlySpan variables, the concordance
program will not examine the firstSpan characters of the file. This means that it will
not find a possible pattern in this sublist. In our example above, the program finds all
the occurrences ofHelenexcept the ones that could occur in the first 15 characters
of the text. This is easily corrected in the program and is left as an exercise.

2.5.2 Concordances in Perl

Arrays in Perl. Writing a basic concordance program is also easy in Perl. How-
ever, to be convenient, the program must be able to read parameters from the com-
mand line – the file name, the pattern to search, and the span size of the concordance
– as in

perl -w concordance.pl corpus.txt my_word 15

These arguments are passed to Perl by the operating system under the form of an
array. Before writing the program, we introduce this feature now.

Arrays in Perl are data structures that can hold any number ofelements of any
type. Their name begins with an at sign,@, for example,@array . Each element has
a position where the programmer can store and read data usingthe position index.

An array grows or shrinks automatically when elements are appended, inserted,
or deleted. Perl manages the memory without any intervention from the programmer.
Here are some examples of arrays:

@array1 = (); # The empty array
@array2 = (1, 2, 3); # Array containing 1, 2, and 3

$var1 = 3.14;
$var2 = "my string";
@array3 = (1, $var1, "Prolog", $var2);
# Array containing four elements of different type

@array4 = (@array2,@array3);
#Same as (1, 2, 3, 1, 3.14, "Prolog", "my string")

Reading or assigning a value to a position of the array is doneusing its index
between square brackets starting from 0:

print $array2[1]; # prints 2

If an element is assigned to a position that did not exist before, Perl grows the
array to store it. The positions in-between are not initialized. They hold the value
undef :

$array4[10] = 10;
print $array4[10]; # prints 10
print $array4[9];
# prints a message telling it is undefined
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The existence of a variable can be tested using thedefined Boolean function
as in:

if (defined($array4[9])) {
print "yes", "\n";

} else {
print "no", "\n";

}

If an undef value is used as a number, it is considered to be a zero. The next
two lines print 1.

$array4[9]++;
print $array4[9];

The variable$#array is the index of the last element of the array. It can be
assigned to grow or shrink the array:

$length4 = $#array4;
print $length4; # prints 10
print $#array2; # prints 2
$#array4 = 5; # shrinks the array to 6 elements.

# Other elements are lost.
print $array4[10];
# prints a message telling it is undefined
$#array2 = 10; # extends the array to 11 elements.

# Indices 3..10 are undefined.

You can also assign a complete array to an array and an array toa list of variables
as in:

@array5 = @array2;
($v1, $v2, $v3) = @array2;

where@array5 contains a copy of@array2 , and$v1 , $v2 , $v3 contain respec-
tively 1, 2, and 3.

Printing Concordances in Perl. Now let us write a concordance program modi-
fied from Cooper (1999). First, we read the command line arguments: the file name,
the pattern to search, and the span size. They are stored in the reserved variable
@ARGV. We open the file using theopen function, which assigns the stream to the
FILE identifier. If open fails, the program exits usingdie and prints a message to
inform us that it could not open the file.

The notation<FILE> designates the input stream, which is assigned to the
$line variable. We read all the text and we assign it to the$text variable. To allow
matching across spaces, tabulations, and new lines, we replace spaces in the regular
expression$pattern representing the pattern to search by the space metacharacter
\s . We also replace the new lines in the text by a space.
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Finally, we use awhile loop to match the pattern with$width characters to
the left and to the right. The/g modifier enables them/.../ instruction to match a
pattern and to start a new search from its current position – where the previous match
ended. Whenm/.../g fails to match, the start position is reset to the beginning
of the string. We create a back reference by setting parentheses around the regular
expression to remember the matched pattern and we print it.

($file_name, $pattern, $width) = @ARGV;
open(FILE, "$file_name") ||

die "Could not open file $file_name.";
while ($line = <FILE>) {

$text .= $line;
}
$pattern =~ s/ /\\s/g;

# spaces match tabs and new lines
$text =~ s/\n/ /g;

# new lines are replaced by spaces
while ($text =~ m/(.{0,$width}$pattern.{0,$width})/g){

# matches the pattern with 0..width
#to the right and left

print "$1\n"; #$1 contains the match
}

Now let us run the command:

perl -w concordance.pl odyssey.txt Penelope 20

itors of his mother Penelope, who persist in eat
ying out yet, while Penelope has such a fine son

upon the Achaeans. Penelope, daughter of Icariu
d of Ulysses and of Penelope in your veins I see
long-suffering wife Penelope, and his son Telema
It was not long ere Penelope came to know what t
reshold of her room Penelope said: "Medon, what

2.6 Approximate String Matching

So far, we have used regular expressions to match exact patterns. However, in many
applications, such as in spell checkers, we need to extend the match span to search
a set of related patterns or strings. In this section, we review techniques to carry out
approximate or inexact string matching.

2.6.1 Edit Operations

A common method to create a set of related strings is to apply asequence of edit
operations that transforms a source strings into a target stringt. The operations are
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carried out from left to right using two pointers that mark the position of the next
character to edit in both strings:

• The copy operation is the simplest. It copies the current character of the source
string to the target string. Evidently, the repetition of copy operations produces
equal source and target strings.

• Substitution replaces one character from the source string by a new character
in the target string. The pointers are incremented by one in both the source and
target strings.

• Insertion inserts a new character in the target string. Thepointer in the target
string is incremented by one, but the pointer in the source string is not.

• Deletion deletes the current character in the target string, i.e., the current char-
acter is not copied in the target string. The pointer in the source string is incre-
mented by one, but the pointer in the target string is not.

• Reversal (or transposition) copies two adjacent characters of the source string
and transposes them in the target string. The pointers are incremented by two
characters.

Kernighan et al. (1990) illustrate these operations with the misspelled word
acressand its possible corrections (Table 2.14).

Table 2.14.Typographical errors (typos) and corrections. Strings differ by one operation. The
correction is the source and the typo is the target. Unless specified, other operations are just
copies. After Kernighan et al. (1990).

Typo Correction Source Target Position Operation
acress actress – t 2 Deletion
acress cress a – 0 Insertion
acress caress ac ca 0 Transposition
acress access r c 2 Substitution
acress across e o 3 Substitution
acress acres s – 4 Insertion
acress acres s – 5 Insertion

If we allow only one edit operation on a source string of lengthn, and if we con-
sider an alphabet of 26 unaccented letters, the deletion will generaten new strings;
the insertion,(n + 1) × 26 strings; the substitution,n × 25; and the transposition,
n− 1 new strings.

2.6.2 Minimum Edit Distance

Complementary to edit operations, edit distances measure the similarity between
strings. They assign a cost to each edit operation, usually 0to copies and 1 to dele-
tions and insertions. Substitutions and transpositions correspond both to an insertion
and a deletion. We can derive from this that they each have a cost of 2. Edit distances



52 2 Corpus Processing Tools

tell how far a source string is from a target string: the lowerthe distance, the closer
the strings.

Given a set of edit operations, the minimum edit distance is the operation se-
quence that has the minimal cost needed to transform the source string into the target
string. If we restrict the operations to copy/substitute, insert, and delete, we can rep-
resent the edit operations using a table, where the distanceat a certain position in
the table is derived from distances in adjacent positions already computed. This is
expressed by the formula:

edit_distance(i, j) = min





edit_distance(i− 1, j) + del_cost
edit_distance(i− 1, j − 1) + subst_cost
edit_distance(i, j − 1) + ins_cost



 .

The boundary conditions for the first row and the first column correspond to a
sequence of deletions and of insertions. They are defined asedit_distance(i, 0) = i
andedit_distance(0, j) = j.

We compute the cell values as a walk through the table from thebeginning of the
strings at the bottom left corner, and we proceed upward and rightward to fill adjacent
cells from those where the value is already known. Arrows in Fig. 2.10 represent the
three edit operations, and Table 2.15 shows the distances totransformlanguageinto
lineage. The value of the minimum edit distance is 5 and is shown at theupper right
corner of the table.

i− 1, j i, j

i− 1, j − 1 i, j − 1

delete

replace
insert

Fig. 2.10.Edit operations.

Table 2.15.Distances betweenlanguageandlineage.

e 7 6 5 6 5 6 7 6 5
g 6 5 4 5 4 5 6 5 6
a 5 4 3 4 5 6 5 6 7
e 4 3 4 3 4 5 6 7 6
n 3 2 3 2 3 4 5 6 7
i 2 1 2 3 4 5 6 7 8
l 1 0 1 2 3 4 5 6 7

Start 0 1 2 3 4 5 6 7 8
– Start l a n g u a g e
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The minimum edit distance algorithm is part of thedynamic programming tech-
niques. Their principles are relatively simple. They use a table to represent data, and
they solve a problem at a certain point by combining solutions to subproblems. Dy-
namic programming is a generic term that covers a set of widely used methods in
optimization.

We implement the minimum edit distance in Perl. We introducethe length
function to compute the length of the source and target, and we usesplit(//,
$string) to convert a string into an array of characters. The instruction

@array = split(regex, $string)

breaks up the$string variable as many times asregex matches in$string .
Theregex expression acts as a separator, and the string pieces are assigned sequen-
tially to @array . In the program,regex is reduced to nothing and assigns all the
characters$string as elements of@array .

($source, $target) = @ARGV;
$length_s = length($source);
$length_t = length($target);
# Initialize first row and column
for ($i = 0; $i <= $length_s; $i++) {

$table[$i][0] = $i;
}
for ($j = 0; $j <= $length_t; $j++) {

$table[0][$j] = $j;
}
# Get the characters. Start index is 0
@source = split(//, $source);
@target = split(//, $target);
# Fills the table.
# Start index of rows and columns is 1
for ($i = 1; $i <= $length_s; $i++) {

for ($j = 1; $j <= $length_t; $j++) {
# Is it a copy or a substitution?
$cost = ($source[$i-1] eq $target[$j-1]) ? 0: 2;
# Computes the minimum
$min = $table[$i-1][$j-1] + $cost;
if ($min > $table[$i][$j-1] + 1) {

$min = $table[$i][$j-1] + 1;
}
if ($min > $table[$i-1][$j] + 1) {

$min = $table[$i-1][$j] + 1;
}
$table[$i][$j] = $min;

}
}
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print "Minimum distance: ",
$table[$length_s][$length_t], "\n";

2.6.3 Searching Edits in Prolog

Once we have filled the table, we can search the operation sequences that correspond
to the minimum edit distance. Such a sequence is also called an alignment.

The depth-first strategy is an economical way to traverse a search space. It is
easy to implement in Prolog and has low memory requirements.The problem with
it is that it blindly selects the paths to follow and can explore very deep nodes while
ignoring shallow ones. To avoid this, we apply a variation ofthe depth-first search
where we fix the depth in advance to the minimum edit distance.We assign it in the
call parameterCost of edit_distance/4 .

The code of the depth-limited search is similar to the depth-first program (see
Appendix A). We add a counter in the recursive case that represents the current
search depth and we increment it until we have reached the depth limit. We compute
each individual edit operation and its cost with theedit_operation/6 predicate.

% edit_distance(+Source, +Target, -Edits, +Cost).
edit_distance(Source, Target, Edits, Cost) :-

edit_distance(Source, Target, Edits, 0, Cost).

edit_distance([], [], [], Cost, Cost).
edit_distance(Source, Target, [EditOp | Edits], Cost,

FinalCost) :-
edit_operation(Source, Target, NewSource,

NewTarget, EditOp, CostOp),
Cost1 is Cost + CostOp,
edit_distance(NewSource, NewTarget, Edits, Cost1,

FinalCost).

% edit_operation carries out one edit operation
% between a source string and a target string.
edit_operation([Char | Source], [Char | Target],

Source, Target, ident, 0).
edit_operation([SChar | Source], [TChar | Target],

Source, Target, sub(SChar,TChar), 2) :-
SChar \= TChar.

edit_operation([SChar | Source], Target, Source,
Target, del(SChar), 1).

edit_operation(Source, [TChar | Target], Source,
Target, ins(TChar), 1).

Using backtracking, Prolog finds all the alignments. We obtain with the minimum
distance of 5:
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?- edit_distance([l,a,n,g,u,a,g,e], [l,i,n,e,a,g,e],
E, 5).

E = [ident, sub(a, i), ident, sub(g, e), del(u),
ident, ident, ident] ;

E = [ident, sub(a, i), ident, del(g), sub(u, e),
ident, ident, ident] ;

E = [ident, sub(a, i), ident, del(g), del(u), ins(e),
ident, ident, ident]

...

with 15 possible alignments in total. Figure 2.6.3 shows thefirst and third ones.

First alignment Third alignment

Without epsilon symbols

 

l a n g u a g e 

l i n e a g e 

 

l a n g u a g e 

l i n e a g e 

With epsilon symbols

 

l a n g u a g e 

l i n e ε a g e 

 

l a n g u ε a g e 

l i n ε ε e a g e 

Fig. 2.11.Alignments of lineageand language. The figure contains two possible represen-
tations of them. In the upper row, the deletions in the sourcestring are in italics, as are the
insertions in the target string. The lower row shows a synchronized alignment, where dele-
tions in the source string as well as the insertions in the target string are aligned with epsilon
symbols (null symbols).

We can apply this Prolog search program alone to find the edit distance. We avoid
going an infinite path with an iterative deepening. We start with an edit distance of 0
(theCost parameter) and we increment it – 1, 2, 3, 4 – until we find the minimum
edit distance. The first searches will fail, and the first one that succeeds corresponds
to the minimum distance.

2.7 Further Reading

Corpora are now easy to obtain. Organizations such as the Linguistic Data Con-
sortium and ELRA collect and distribute texts in many languages. Although not
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widely cited, the first fiction corpus with more than 100 million words was probably
FranText, which helped write theTrésor de la langue française(Imbs 1971–1994).
Other early corpora include the Bank of English, which contributed to theCollins
COBUILD Dictionary(Sinclair 1987).

Text and corpus analysis are an active focus of research in computational lin-
guistics. They include the description of word distributions that were theorized at the
beginning of the 20th century by Bloomfield and followers such as Harris (1962).
Paradoxically, natural language processing conducted by computer scientists largely
ignored corpora until the 1990s, when it rediscovered techniques routinely used in
humanities. For a short history, see Zampolli (2003).

Roche and Schabes (1997, Chap. 1) is a concise and clear introduction to
automata theory. It makes an extensive use of mathematical notations, however.
Hopcroft et al. (2001) is a standard and comprehensive textbook on automata and
regular expressions. Friedl (2002) is a thorough presentation of regular expressions
oriented toward applications and programming techniques.

Although the idea of automata underlies some mathematical theories of the 19th
century such as those of Markov, Gödel, or Turing, Kleene (1956) was first to give
a formal definition. He also proved the equivalence between regular expressions and
FSA. Thompson (1968) was the first to implement a widely used editor embedding
a regular expression tool: Global/Regular Expression/Print, better known asgrep .

There are several FSA toolkits available from the Internet.The FSA utilities (van
Noord and Gerdemann 2001) is a Prolog package to manipulate regular expressions,
automata, and transducers (odur.let.rug.nl/˜vannoord/Fsa/). The FSM library (Mohri
et al. 1998) is another set of tools (www.research.att.com/sw/tools/fsm/). Both in-
clude rational operations – union, concatenation, closure, reversal – and equivalence
transformation –ε-elimination, determinization, and minimization.

Exercises

2.1. Implement the automaton in Fig. 2.5.

2.2. Implement a Prolog program to automatically construct an automaton to search
a given input string.

2.3.Write a regular expression that finds occurrences ofhonourandhonor in a text.

2.4.Write a regular expression that finds lines containing all the vowelsa, e, i, o, u,
in that order.

2.5.Write a regular expression that finds lines consisting only of lettersa, b, or c.

2.6.List the strings generated by the expressions:

(ab) * c
(a.) * c
(a|b) *
a|b * |(a|b) * a
a|bc * d
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2.7.Complement the Prolog concordance program to sort the linesaccording to
words appearing on the right of the string to search.

2.8.Write the iterative deepening search in Prolog to find the minimum edit distance.






