A

An Introduction to Prolog

A.1 A Short Background

Prolog was designed in the 1970s by Alain Colmerauer andra tdaesearchers
with the idea — new at that time — that it was possible to usk lmgepresent knowl-
edge and to write programs. More precisely, Prolog uses seswlh predicate logic
and draws its structure from theoretical works of earligid@ans such as Herbrand
(1930) and Robinson (1965) on the automation of theoremipgov

Prolog was originally intended for the writing of naturahtpuage processing ap-
plications. Because of its conciseness and simplicityedame popular well beyond
this domain and now has adepts in areas such as:

« Formal logic and associated forms of programming
« Reasoning modeling

« Database programming

* Planning, and so on.

This chapter is a short review of Prolog. In-depth tutoriatdude: in English,
Bratko (2001), Clocksin and Mellish (2003), Covington et(@l997), Sterling and
Shapiro (1994); in French, Giannesini et al. (1985); andénn@an, Bauman (1991).
Boizumault (1988, 1993) contain a didactical implemeptatf Prolog in Lisp. Pro-
log foundations rest on first-order logic. Apt (1997), Buddd Foxley (1996), De-
lahaye (1986), and Lloyd (1987) examine theoretical linkiseen this part of logic
and Prolog.

Colmerauer started his work at the University of Montréat] a first version of
the language was implemented at the University of Marseiti€l972. Colmerauer
and Roussel (1996) tell the story of the birth of Prolog, uildhg their try-and-fail
experimentation to select tractable algorithms from thesrat results provided by
research in logic.

In 1995, the International Organization for StandardaatflSO) published a
standard on the Prolog programming language. Standardd’(Bleransart et al.
1996) is becoming prevalent in the Prolog community and nobshe available

434 A An Introduction to Prolog

implementations now adopt it, either partly or fully. Urdespecifically indicated,
descriptions in this chapter conform to the ISO standard,examples should run
under any Standard Prolog implementation.

A.2 Basic Features of Prolog
A.2.1 Facts

Facts are statements that describe object propertiesatiored between objects. Let
us imagine we want to encode that Ulysses, Penelope, Telersaéchilles, and
others are characters of Homelliad andOdysseyThis translates into Prolog facts
ended with a period:

character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
character(agamemnon, iliad).
character(patroclus, iliad).
character(hector, iliad).
character(andromache, iliad).
character(rhesus, iliad).
character(ulysses, iliad).
character(menelaus, iliad).
character(helen, iliad).

character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).
character(laertes, odyssey).
character(nestor, odyssey).
character(menelaus, odyssey).
character(helen, odyssey).
character(hermione, odyssey).

Such a collection of facts, and later, of rules, makes database It transcribes
the knowledge of a particular situation into a logical fotmfsdding more facts to
the database, we express other properties, such as ther gécHaracters:

% Male characters % Female characters
male(priam). female(hecuba).
male(achilles). female(andromache).
male(agamemnon). female(helen).
male(patroclus). female(penelope).

male(hector).

A.2 Basic Features of Prolog 435

male(rhesus).
male(ulysses).
male(menelaus).
male(telemachus).
male(laertes).
male(nestor).

or relationships between characters such as parentage:

% Fathers % Mothers
father(priam, hector). mother(hecuba, hector).
father(laertes,ulysses). mother(penelope,telemachus)
father(atreus,menelaus). mother(helen, hermione).
father(menelaus, hermione).

father(ulysses, telemachus).

Finally, would we wish to describe kings of some cities angirtiparties, this
would be done as:

king(ulysses, ithaca, achaean).
king(menelaus, sparta, achaean).
king(nestor, pylos, achaean).
king(agamemnon, argos, achaean).
king(priam, troy, trojan).
king(rhesus, thrace, trojan).

From these examples, we understand that the general fornPadlag fact is:
relation(objectl, object2, ..., objectn) . Symbols or names rep-
resenting objects, such as/sses or penelope , are calledatoms Atoms are
normally strings of letters, digits, or underscores,“and begin with a lowercase
letter. An atom can also be a string beginning with an upperdetter or includ-
ing white spaces, but it must be enclosed between quotes Thysses’ or
'Pallas Athena’ are legal atoms.

In logic, the name of the symbolielation is the predicate, the objects
objectl , object2 ,...,objectn involved in the relation are tharguments
and the numban of the arguments is thewrity . Traditionally, a Prolog predicate is in-
dicated by its name and aritgredicate/arity , for examplecharacter/2
king/3

A.2.2 Terms

In Prolog, all forms of data are calledrms. The constants, i.e., atoms or numbers,
are terms. The fadting(menelaus, sparta, achaean) is a compound
term or astructure, that is, a term composed of other termsubterms The argu-
ments of this compound term are constants. They can alsdbeaimpound terms,
asin

436 A An Introduction to Prolog

character(priam, iliad, king(troy, trojan)).
character(ulysses, iliad, king(ithaca, achaean)).
character(menelaus, iliad, king(sparta, achaean)).

where the arguments of the predicatearacter/3 are two atoms and a com-
pound term.

Itis common to use trees to represent compound terms. Thesrafdh tree are
then equivalent to the functors of a term. Figure A.1 shovesrgXes of this.

Terms Graphical representations

male(ulysses) male

ulysses
father(ulysses, telemachus) father

ulysses telemachus
character(ulysses, odyssey, character
king(ithaca, achaean))
ulysses odyssey king
ithaca achaean

Fig. A.1. Graphical representations of terms.

Syntactically, a compound term consists ofuactor — the name of the re-
lation — and arguments. The leftmost functor of a term isphacipal functor .
A same principal functor with a different arity correspordglifferent predicates:
character/3 is thus different frontharacter/2 . A constant is a special case
of a compound term with no arguments and an arity of 0. Thetaotabc can thus
be referred to aabc/0 .

A.2 Basic Features of Prolog 437
A.2.3 Queries

A query is a request to prove or retrieve information fromdaéabase, for example,
if a fact is true. Prolog answers yes if it can prove it, thathisre if the fact is in
the database, or no if it cannot: if the fact is absent. Thetiprels Ulysses a mafe
corresponds to the query:

Query typed by the user

| ?- male(ulysses). |

Yes —

Answer from the Prolog engine

which has a positive answer. A same question with Penelopédvgive:

?- male(penelope).
No

because this fact is not in the database.

The expressionsale(ulysses) or male(penelope) aregoalsto prove.
The previous queries consisted of single goals. Some gusstequire more goals,
such ads Menelaus a male and is he the king of Sparta and an Achaesmeh
translates into:

?- male(menelaus), king(menelaus, sparta, achaean).
Yes

where 4 " is the conjunction operator. It indicates that Prolog hagptove both
goals. The simple queries have one goal to prove, whiletmepound queriesare
a conjunction of two or more goals:

?- G1, G2, G3, .., Gn.

Prolog proves the whole query by proving that all the g@xls . .Gnare true.

A.2.4 Logical Variables

The logical variables are the last kind of Prolog terms. Sgtitally, variables be-
gin with an uppercase letter, for examp¥,Xyz, or an underscore . Logical
variables stand for any term: constants, compound ternts,oétmer variables. A
term containing variables such aeBaracter(X, Y) can unify with a compat-
ible fact, such agharacter(penelope, odyssey) , with the substitutions
X = penelope andY = odyssey .

When a query term contains variables, the Prolog resolatligorithm searches
terms in the database that unify with it. It then substittiesvariables to the match-
ing arguments. Variables enable users to ask questionsasiehat are the charac-
ters of the Odyssey?

438 A An Introduction to Prolog

The variable The query
-

V-

?- character(X, odyssey).

(The Prolog answer
X = ulysses

Or What is the city and the party of king Menelaw®.

?- king(menelaus, X, Y).
X = sparta, Y = achaean

?- character(menelaus, X, king(Y, Z2)).
X = iliad, Y = sparta, Z = achaean

?- character(menelaus, X, Y).
X = iliad, Y = king(sparta, achaean)

When there are multiple solutions, Prolog considers thé féict to match the
query in the database. The user can typ&td get the next answers until there is no
more solution. For example:

The variable The query

[2- male(X). | Prolog answers, unifying X with a value

X = priam ,7 The user requests more answers, typing a semicolon

[X = achilles ; |

\ Prolog proposes more solutions

No Until there are no more matching facts in the database

A.2.5 Shared Variables

Goals in a conjunctive query can share variables. This ifulis® constrain argu-
ments of different goals to have a same value. To expressubstiqnls the king
of Ithaca also a father™ Prolog, we use the conjunction of two go&isg(X,
ithaca, Y) andfather(X, Z2) , Where the variablX is shared between goals:

?- king(X, ithaca, Y), father(X, Z).
X = ulysses, Y = achaean, Z = telemachus

In this query, we are not interested by the name of the chtlibagh Prolog
responds wittZ = telemachus .We can indicate to Prolog that we do not need

A.2 Basic Features of Prolog 439

to know the values off and Z usinganonymous variables We then replac&
and Z with the symbol “ ", which does not return any value:

?- king(X, ithaca,), father(X,).
X = ulysses
A.2.6 Data Types in Prolog

To sum up, every data object in Prolog is a term. Terms dividie atomic terms,
variables, and compound terms (Fig. A.2).

Terms
Atomic terms Variables Compound terms
(Constants) (Structures
Atoms Numbers
Integers Floating point
number

Fig. A.2.Kinds of terms in Prolog.

Syntax of terms may vary according to Prolog implementatidiou should con-
sult reference manuals for their specific details. Here istaf simplified conven-
tions from Standard Prolog (Deransart et al. 1996):

» Atoms are sequences of letters, numbers, and/or undessbeginning with a
lowercase letter, aglysses ,iSLanD3 , king_of_Ithaca

e Some single symbols, called solo characters, are atoms:

e Sequences consisting entirely of some specific symbolsaphic characters are

atoms + - * /[T<=>": . 2@ #%& \°

* Any sequence of characters enclosed between single gsaéso an atom, as
'’king of Ithaca’ . A quote within a quoted atom must be double quoted:
T

« Numbers are either decimal integers,-&9 , 1960, octal integers when pre-
ceded by0o, as0056 , hexadecimal integers when precededky asOxF4 , or
binary integers when preceded 0ly, asOb101 .

* Floating-point numbers are digits with a decimal point3ak4 , -1.5 . They
may contain an exponent, 88E-5 (23 107°) or-2.3e5 (2.3107°).

e The ASCII numeric value of a characteris denoted)’x , asO’'a (97),0b
(98), etc.

440 A An Introduction to Prolog

» \Variables are sequences of letters, numbers, and/or sewless beginning with
an uppercase letter or the underscore character.

* Compound terms consist of a functor, which must be an atoliowed immedi-
ately by an opening parenthesis, a sequence of terms segpsatommas, and
a closing parenthesis.

Finally, Prolog uses two types of comments:

e Line comments go from theés symbol to the end of the line:
% This is a comment
e Multiline comments begin with a/*+” and end with a %/ ™
| *
this
is
a comment */

A.2.7 Rules

Rules enable to derive a new property or relation from a sexafting ones. For
instance, the property of being the son of somebody correlptm either the prop-
erty of having a father and being a male, or having a mothertsidg a male.
Accordingly, the Prolog predicateon(X, Y) corresponds either to conjunction
male(X), father(Y, X) , or to male(X), mother(Y, X) . Being a son
admits thus two definitions that are transcribed as two Braltes:

son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

More formally, rules consist of a term called thead followed by symbol -
read if, and a conjunction of goals. They have the form:

HEAD :- G1, G2, G3, ... Gn.

where the conjunction of goals is thedy of the rule. The head is true if the body
is true. Variables of a rule are shared between the body antehd. Rules can be
queried just like facts:

?- son(telemachus, Y).
Y = ulysses;

Y = penelope;

No

Rules are a flexible way to deduce new information from a sdacfs. The
parent/2 predicate is another example of a family relationship tlsagasy to
define using rules. Somebody is a parent if s/he is either henor a father:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

A.2 Basic Features of Prolog 441

Rules can call otherrules as wignandparent/2 . A grandparentis the parent
of a parent and is defined in Prolog as

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

whereZ is an intermediate variable shared between goals. It enaisi¢o find the
link between the grandparent and the grandchild: a motharfather.

We can generalize thgrandparent/2 predicate and writ@ncestor/2
We use two rules, one of them being recursive:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This latter pattern is quite common of Prolog rules. One orawales express a
general case using recursion. Another set of rules or fagsribes simpler condi-
tions without recursion. They correspond to boundary casdsnable the recursion
to terminate.

A query about the ancestors of Hermione yields:

?- ancestor(X, hermione).
X= menelaus;

X = helen;
X = atreus;
No

Facts and rules are also callelduses A predicate is defined by a set of clauses
with the same principal functor and arity. Facts are indgeetiml cases of rules:
rules that are always true anelation(X, Y) is equivalent taelation(X,

Y) :- true , wheretrue/0 is a built-in predicate that always succeeds. Most
Prolog implementations require clauses of the same namaréiyzdo be grouped
together.

In the body of a rule, the comma * represents a conjunction of goals. It is also
possible to use a disjunction with the operatot.“Thus:

is equivalent to

A - B.
A - C.

However, ; " should be used scarcely because it impairs somewhat thmsligg
of clauses and programs. The latter form is generally better

442 A An Introduction to Prolog
A.3 Running a Program

The set of facts and rules of a file makes upralog text or program. To run it and
use the information it contains, a Prolog system has to lbadext and add it to the
current database in memory. Once Prolog is launched, itajis@ prompt symbol
“?- " and accepts commands from the user.

Ways to load a program are specific to each Prolog implenientaf user
should look them up in the reference manual because thentwstandard does
not define them. There are, however, two commands drawn fharEdinburgh
Prolog tradition (Pereira 1984) implemented in most systeconsult/1 and
reconsult/1

The predicateonsult/1 loads a file given as an argument and adds all the
clauses of the file to the current database in memory:

?- consult(file_name).
file_name must be an atom as, for example,
?- consult(odyssey.pl’).
Itis also possible to use the shortcut:
?- [file_name].
to load one file, for example,
?- ['odyssey.pl].
or more files:
?- [file1, file2].

The predicateeconsult/1 is a variation ofconsult . Usually, a program-
mer writes a program, loads it usiegnsult , runs it, debugs it, modifies the pro-
gram, and reloads the modified program until it is correctil®onsult adds the
modified clauses to the old ones in the databesmnsult updates the database
instead. It loads the modified file and replaces clauses sfiegipredicates in the
database by new clauses contained in the file. If a predisatethe file and not
in the databaseseconsult simply adds its clauses. In some Prolog systems,
reconsult does not exist, ancbnsult discards existing clauses to replace them
by the new definition from the loaded file. Once a file is loadbd, user can run
queries.

Thelisting/0 built-in predicate displays all the clauses in the datapase
listing/1 , the definition of a specific predicate. Thsting/1 argument for-
mat is eithelPredicate or Predicate/Arity

?- listing(character/2).
character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).

A.4 Unification 443

A program can also include directives, i.e., predicatesuto at load time. A
directive is a rule without a head: a term or a conjunctionesfns with a *- ”
symbol to its left-hand side:

.- predicates_to_execute.

Directives are run immediately as they are encountered difective is to be
executed once the program is completely loaded, it mustr@tdhe end of the file.
Finally, halt/O quits Prolog.

A.4 Unification

A.4.1 Substitution and Instances

When Prolog answers a query made of a téroontaining variables, it appliesab-
stitution. This means that Prolog replaces variable®'iny values so that it proves
T to be true. The substitutiofX = ulysses, Y = odyssey} is a solu-
tion to the querycharacter(X, Y) because the facharacter(ulysses,
odyssey) is in the database. In the same vein, the substitytfor= sparta,
Y = achaean} is a solution to the queriing(menelaus, X, Y)

More formally, a substitution is a s€K1 = t1, X2 = t2, ..., Xn =
tn} ,whereXi isavariableantl isaterm. Applying a substitutionto a term’ is
denotedl’s and corresponds to the replacement of all the occurrencesiableXi
withtermti in T fori ranging froml ton. Applying the (meaningless) substitution
o1 = {X = ulysses} to the termT1l = king(menelaus, X, Y) yields

T1' = king(menelaus, ulysses, Y) . Applying the substitutior, = {X
= iliad, Y = king(sparta, achaean)} to the termT2 = charac-
ter(menelaus, X, Y) yields T2’ = character(menelaus, iliad,

king(sparta, achaean))

A termT” resulting from a substitutiofi'c is aninstanceof T'. More generally,
T’ is an instance of if there is a substitution so thdt = T'c. If T’ is an instance
of T, thenT is more generalthan7”. Terms can be ordered according to possible
compositions of instantiations. For examptlaracter(X, Y) is more general
than character(ulysses, odyssey) ; king(X, Y, 2) is more general
thanking(menelaus, Y, Z) , which is more general thding(menelaus,

Y, achaean) ,which is itself more general thding(menelaus, sparta,
achaean) .

A substitution mapping a set of variables onto another seaoébles such as
={X = A, Y = B}ontotermcharacter(X, Y) is arenaming substitution.
Initial and resulting termsharacter(X, Y) andcharacter(A, B) are said
to bealphabetical variants. Finally, aground term is a term that contains no vari-
able such aking(menelaus, sparta, achaean)

444 A An Introduction to Prolog

A.4.2 Terms and Unification

To equate two termg,1 andT2, Prolog uses unification, which substitutes variables
in the terms so that they are identical. Unification is a labmechanism that carries
out a two-way matching, fronfl to T2 and the reverse, and merges them into a
common term. Prolog unifies terms to solve equations suéias T2. Italso uses
unification in queries to match a goal or a subgoal to the hétlteaule. Figure A.3
shows the intuitive unification of terms

T1 = character(ulysses, Z, king(ithaca, achaean))
and
T2 = character(ulysses, X, Y)

through a graphical superposition.

character = character

. /

Fig. A.3. Unification of terms: a graphical interpretation.

ulysses k

ing

ithaca achaean

The superposition of the two terms requires finding an ircgan@mmon to both
termsT; andTs. This can be restated as there exist two substitugramdo, such
thatTio; = Troo. A unifier is a substitution makin@} and7: identical:Ty0 =
T>o. In our example, there is an infinite number of possible urgfi€andidates
include the substitutioar ={Z = c(a), X = c(a), Y = king(ithaca,
achaean)} ,whichyieldsthe common instanagharacter(ulysses,c(a),

king(ithaca, achaean)) . They also includes = {Z = female, Z =
female, Y = king(ithaca, achaean)} , which yields another common
instance.character(ulysses, female, king(ithaca, achaean)) ,
etc.

Intuitively, these two previous unifiers are special caddb@unification ofT1
andT2. In fact, all the unifiers are instances of the substitution{X = Z, Y =
king(ithaca, achaean)} , which is themost general unifieror MGU.

Real Prolog systems display the unificationTdf and T2 in a slightly different
way:

?- character(ulysses, Z, king(ithaca, achaean)) =
character(ulysses, X, Y).
X = G123, Y = king(ithaca, achaean), Z = _G123

A.4 Unification 445

where_Gxyz are variable names internal to the Prolog system.

A.4.3 The Herbrand Unification Algorithm

The reference algorithm to unify terms is due to Herbrandifkend 1930, Martelli
and Montanari 1982). It takes the two terms to unify as inphe output is either a
failure if terms do not unify or the MGU ».

The algorithm initializes the substitution to the empty aetl pushes terms on
a stack. The main loop consists in popping terms, compaheg functors, and
pushing their arguments on the stack. When a variable isdfotlne corresponding
substitution is added te (Sterling and Shapiro 1994, Deransart et al. 1996).

« Initialization step
Initialize o to {}
Initialize failure tofalse
Push the equatiof; = 75 on the stack
* Loop
repeat {
pop x = y from the stack
if zis aconstantand == y. Continue.
else if x is a variable and: does not appear in.
Replacer with y in the stack and im. Add the substitutioz = y} to
ag.
else if x is a variable and: == y. Continue.
else if y is a variable and: is not a variable.
Pushy = z on the stack.
else if z andy are compounds with = f(x1,...,x,) andy = f(y1, ..., Yn)-
Push on the stack; = y; for i ranging from 1 ton.
else Sefailure totrue , ando to {}. Break.
}until (stack# 0)

A.4.4 Example

Let us exemplify the Herbrand algorithm with ternig@g(X, h(X, b)), 2)
andf(g(a, 2), Y) . We will use a two-way stack: one for the left term and one
for the right term, and let us scan and push term argumentstight to left.

For the first iteration of the loop; andy are compounds. After this iteration, the
stack looks like:

Left term of the stack (z) Right term of the stack (y)
gX, h(X, b)) = g(a, 2)
z = Y

with the substitutiorr = {}.

The second iteration pops the top terms of the left and rightspof the stack.
The loop condition corresponds to compound terms againalgarithm pushes the
arguments of left and right terms on the stack:

446 A An Introduction to Prolog

Left term of the stack (z) Right term of the stack (y)
X = a
h(X, b) = z
z = Y

with the substitutiorr = {}.
The third iteration pops the equati®n = a. The algorithm adds this substitution
to o and carries out the substitution in the stack:

Left term of the stack (z) Right term of the stack (y)
h(X, b) ~ h(a, b) = z
z = Y

with the substitutiomr ={X = a} .
The next iteration popf(a, b) = Z , swaps the left and right terms, and
yields:

Left term of the stack (z) Right term of the stack (y)
z h(a, b)
z Y

The fifth iteration pop&Z = h(a, b) and yields:

Left term of the stack (z) Right term of the stack (y)
Z ~ h(a, b) = Y

with the substitutiom ={X = a, Z = h(a, b) }.
Finally, we get the MGW ={X = a, Z = h(a, b), Y = h(a, b) }
that yields the unified terffg(a, h(a, b)), h(a, b))

A.4.5 The Occurs-Check

The Herbrand algorithm specifies that variabtesr Y must not appear — occur — in
the right or left member of the equation to be a successfudtiubion. The unifica-
tion of Xandf(X) should then fail becaudéxX) containsX.

However, most Prolog implementations do not check the @eage of variables
to keep the unification time linear on the size of the smalidghe terms being
unified (Pereira 1984). Thus, the unificatisn= f(X) unfortunately succeeds re-
sulting in a stack overflow. The terf(X) infinitely replacesX in o, yielding X =
f(f(X)) , f(f(F(X))) , F(F(F(FCX)))) , etc., until the memory is exhausted.
It results into a system crash with many Prologs.

Although theoretically better, a unification algorithm ttheould implement an
occurs-check is not necessary most of the time. An expeztepogrammer will not
write unification equations with a potential occurs-cheadaem. That is why Pro-
log systems compromised the algorithm purity for speedushthe occurs-check be
necessary, Standard Prolog providesuhigy with_occurs_check/2 built-
in predicate:

A.5 Resolution 447

?- unify_with_occurs_check(X, f(X)).
No

?- unify_with_occurs_check(X, f(a)).
X = f(a)

A.5 Resolution

A.5.1 Modus Ponens

The Prolog resolution algorithm is based onthedus ponen®rm of inference that
stems from traditional logic. The idea is to use a general +uhe major premise —
and a specific fact — the minor premise — like the famous:

All men are mortal
Socrates is a man

to conclude, in this case, that
Socrates is mortal

Table A.1 shows the modus ponens in the classical notatigreaficate logic
and in Prolog.

Table A.1. The modus ponens notation in formal logic and its Prolog\exent.

Formal notation Prolog notation

Facts @ man(’'Socrates’).
Rules a=pf mortal(X) :- man(X).
Conclusion g mortal(’Socrates’).

Prolog runs a reversed modus ponens. Using symbols in TaklePAolog tries
to prove that a queryd) is a consequence of the database content (=). Using
the major premise, it goes fromto «, and using the minor premise, framto true.
Such a sequence of goals is calledkgivation. A derivation can be finite or infinite.

A.5.2 A Resolution Algorithm

Prolog uses a resolution algorithm to chain clauses mecabiyand prove a query.
This algorithm is generally derived from Robinson’s resioln principle (1965),

known as the SLD resolution. SLD stands for “linear resolitiwith a “selec-

tion function” for “definite clauses” (Kowalski and Kuehn&®71). Here “definite
clauses” are just another name for Prolog clauses.

448 A An Introduction to Prolog

The resolution takes a program — a set of clauses, rules aatglf and a query
Qas an input (Sterling and Shapiro 1994, Deransart et al.)1#9nsiders a con-
junction of current goals to prove, called ttesolvent, that it initializes withQ. The
resolution algorithm selects a goal from the resolvent aatches a clause in the
database so that the head of the clause unifies with the ¢ogplaces the goal with
the body of that clause. The resolution loop replaces ssix@dy¢ goals of the resol-
vent until they all reduce to true and the resolvent becomgsye The output is then
a success with a possible instantiation of the query @alor a failure if no rule
unifies with the goal. In case of success, the final subsiitydti, is the composition
of all the MGUs involved in the resolution restricted to theiables ofQ This type
of derivation, which terminates when the resolvent is erriptgalled arefutation.

¢ Initialization
Initialize Resolvent to Q, the initial goal of the resolution algorithm.
Initialize o to {}
Initialize failure tofalse
e Loopwith Resolvent = G, &, ..., G, ..., G,
while (Resolvent # 0) {
1. Selectthe godb; € Resolvent ;

2. If G == true , delete it and continue;

3. Selecttherul®l - B 4, ..., B, inthe database such thgtandH
unify with the MGU 6. If there is no such a rule then dailure to
true ; break;

4. Replaces; with By, ..., B, in Resolvent

% Resolvent = G 1,...,G i—1, B1,....B ny Gi+1!'-'1 G m
5. Apply 6 to Resolvent and toQ
6. Composer with § to obtain the new curremt;

}

Each goal in the resolvent —i.e., in the body of a rule — mudtifierent from a
variable. Otherwise, this goal must be instantiated to asadable term before it is
called. Thecall/1 built-in predicate then executes it as in the rule:

daughter(X, Y) :-
mother(Y, X), G = female(X), call(G).
wherecall(G) solves the goaG just as if it werefemale(X) . In fact, Prolog
automatically insertsall/l predicates when it finds that a goal is a variakés
thus exactly equivalent toall(G) , and the rule can be rewritten more concisely
in:
daughter(X, Y) :-
mother(Y, X), G = female(X), G.

A.5.3 Derivation Trees and Backtracking

The resolution algorithm does not tell us how to select a ffoah the resolvent. It
also does not tell how to select a clause in the program. Int oas®s, there is more

A.5 Resolution 449

than one choice. The selection order of goals is of no coreserpibecause Prolog
has to prove all of them anyway. In practice, Prolog consitlez leftmost goal of the

resolvent. The selection of the clause is more significandbse some derivations
lead to a failure although a query can be proved by other aléoivs. Let us show

this with the program:

P(X) - q(X), r(X).
q(a).
q(b).
r(b).
r(c).

and the quer®- p(X)

Let us compute the possible states of the resolvent alorgtivit resolution’s
iteration count. The first resolvent (R1) is the query itsélfe second resolvent (R2)
is the body ofp(X) : q(X), r(X) ;there is no other choice. The third resolvent
(R3) has two possible values because the leftmost sulmf#al can unify either
with the factsq(a) or q(b) . Subsequently, according to the fact selected and the
corresponding substitution, the derivation succeedsilsr(féig. A.4).

R1: p(X)
R2: a(x), r(X)
c={X = a N o ={X = b}
R3: q(a), r(a) q(b), r(b)
R4: true, r(a) true, r(b)
failure
R5: true

success

Fig. A.4. The search tree and successive values of the resolvent.

The Prolog resolution can then be restated as a search,apétthre of succes-
sive states of the resolvent as a search tree. Now how do&syRelect a clause?
When more than one is possible, Prolog could expand thevesstohs many times
as there are clauses. This strategy would correspond toaalthréirst search. Al-
though it gives all the solutions, this is not the one Prologpkoys because would be
unbearable in terms of memory.

Prolog uses a depth-first search strategy. It scans clausagdp to bottom and
selects the first one to match the leftmost goal in the resblViéis sometimes leads
to a subsequent failure, as in our example, where the segudmesolvents is first
p(X) ,thenthe conjunctiog(X), r(X) , afterthaiy(a), r(a) , and finally the
goalr(a) ,whichisnotinthe database. Prolog uses a backtrackingamégm then.

450 A An Introduction to Prolog

During a derivation, Prolog keeps a record of backtrack saithen there is a pos-
sible choice, that is, where more than one clause unifiestivtlcurrent goal. When
a derivation fails, Prolog backs up to the last point whereoitlld select another
clause, undoes the corresponding unification, and proogikdshe next possible
clause. In our example, it corresponds to resolvent R2 wugtsecond possible uni-
fication: q(b) . The resolvent R3 is theg(b), r(b) , which leads to a success.
Backtracking explores all possible alternatives until @on is found or it reaches
a complete failure.

However, although the depth-first strategy enables us tdoexpnost search
trees, it is only an approximation of a complete resolutigoathm. In some cases,
the search path is infinite, even when a solution exists. identhe program:

p(X) - p(X), a(X).
p(a).
q(@).

where the querp(a) does not succeed because of Prolog’s order of rule selection
Fortunately, most of the time there is a workaround. Heraffices to invert the
order of the subgoals in the body of the rule.

A.6 Tracing and Debugging

Bugsare programming errors, that is, when a program does not @b wh expect
from it. To isolate and remove them, the programmer usdstaugger. A debug-
ger enables programmers to trace the goal execution andatiofi step by step. It
would certainly be preferable to write bug-free programs,tb err is human. And
debugging remains, unfortunately, a frequent part of frogdevelopment.

The Prolog debugger uses an execution model describingptiteot flow of a
goal (Fig. A.5). Itis pictured as a box representing the goadlicate with four ports,
where:

e The Call port corresponds to the invocation of the goal.

< If the goal is satisfied, the execution comes out throughBki¢ port with a
possible unification.

» If the goal fails, the execution exits through the Fail port

* Finally, if a subsequent goal fails and Prolog backtrackisyt another clause of
the predicate, the execution re-enters the box through ¢lole Rort.

Call ——> —> EXit

p(X)

Fail <«— <——— Redo

Fig. A.5. The execution model of Prolog.

A.6 Tracing and Debugging 451

The built-in predicatérace/0 launches the debugger andtrace/0 stops

it. The debugger may have different commands accordingedtblog system you
are using. Major ones are:

creep to proceed through the execution ports. Simply type retoioréep.
skip to skip a goal giving the result without examining its subgoféypes to
skip).

retry starts the current goal again from an exit or redo port (type

fail makes a current goal to fail (tyde.

abort to quit the debugger (type).

Figure A.6 represents the rugX) :- q(X), r(X) , Where the box corre-

sponding to the head encloses a chain of subboxes pictinénzpinjunction of goals
in the body. The debugger enters goal boxes usingtbep command.

pP(X)
Call Exit
e E—

\cL E C yr
/F

axX g gl r(X |g

\ Redo

Fail

Fig. A.6. The execution box representing the rplX) :- q(X), r(X)

As an example, let us trace the program:

p(X) - a(X), r(X).

q(a).

q(b).

r(b).

r(c).

with the queryp(X) .

?- trace.

Yes

?- p(X).
Call: (7) p(_G106) ? creep
Call: (8) g(_G106) ? creep
Exit: (8) g(a) ? creep
Call: (8) r(a) ? creep
Fail: (8) r(a) ? creep

Redo: (8) q(_G106) ? creep
Exit: (8) q(b) ? creep
Call: (8) r(b) ? creep

452 A An Introduction to Prolog

Exit: (8) r(b) ? creep
Exit: (7) p(b) ? creep
X =bhb

A.7 Cuts, Negation, and Related Predicates
A.7.1 Cuts

The cut predicate, written! ™, is a device to prune some backtracking alternatives.
It modifies the way Prolog explores goals and enables a progex to control the
execution of programs. When executed in the body of a cldabee;ut always suc-
ceeds and removes backtracking points set before it in thierdiclause. Figure A.7

shows the execution model of the ry@éX) :- q(X), !, r(X) that contains
a cut.
P(X)
Call Exit
. a(x R ! TR
Fail]] Redo

Fig. A.7. The execution box representing the rplX) :- q(X), !, r(X)

Let us suppose that a predic&eonsists of three clauses:

P - A Ty weey A i !, A Gbly ven A
P:-B+4 ..., B ..
P :-C Ty eeey C p-

ne

Executing the cut in the first clause has the following conseges:

1. All other clauses of the predicate below the clause coimgithe cut are pruned.
That is, here the two remaining clausedokill not be tried.

2. All the goals to the left of the cut are also pruned. ThaAis, ..., A ; will
no longer be tried.

3. However, it will be possible to backtrack on goals to thghtiof the cut.

P - H,—I, A 1+1y eeny A n-

P - B B
L D15y D
P - C C
L ot ope

Cuts are intended to improve the speed and memory consumggteprogram.
However, wrongly placed cuts may discard some useful backiing paths and solu-

tions. Then, they may introduce vicious bugs that are oftfficdlt to track. There-
fore, cuts should be used carefully.

A.7 Cuts, Negation, and Related Predicates 453

An acceptable use of cuts is to express determinism. Datéstiai predicates
always produce a definite solution; it is not necessary thendintain backtracking
possibilities. A simple example of it is given by the minimafitwo numbers:

minimum(X, Y, X) - X <.
minimum(X, Y, Y) - X >= V.

Once the comparisonis done, there is no means to backtraakbeboth clauses
are mutually exclusive. This can be expressed by adding tus ¢

minimum(X, Y, X) - X <Y, L
minimum(X, Y, Y) - X >= Y, L

Some programmers would rewrit@nimum/3 using a single cut:

minimum(X, Y, X) - X <Y, L
minimum(X, Y, Y).

The idea behind this is that once Prolog has compAraadY in the first clause,
it is not necessary to compare them again in the second otigough the latter
program may be more efficient in terms of speed, it is obsdarthe first version
of minimum/3 , cuts respect the logical meaning of the program and do nodim
its legibility. Such cuts are callegreen cuts The cut in the seconthinimum/3
predicate is to avoid writing a condition explicitly. Suclits are error-prone and are
calledred cuts. Sometimes red cuts are crucial to a program but when owvebrtrssy
are a bad programming practice.

A.7.2 Negation

A logic program contains no negative information, only geethat can be proven or
not. The Prolog built-in negation corresponds to a quetyifai the program cannot
prove the query. The negation symbol is writt§a-" or not in older Prolog systems:

* If Gsucceeds thext Gfails.
» If Gfails then\+ Gsucceeds.

The Prolog negation is defined using a cut:

\+(P) - P, |, fall.
\+(P) :- true.

wherefail/l0 is a built-in predicate that always fails.
Most of the time, it is preferable to ensure that a negatedligagound: all its
variables are instantiated. Let us illustrate it with thmsavhat odd rule:

mother(X, Y) :- \+ male(X), child(Y, X).

and facts:

454 A An Introduction to Prolog

child(telemachus, penelope).
male(ulysses).
male(telemachus).

The query
?- mother(X, Y).

fails because the subgaahble(X) is not ground and unifies with the fact
male(ulysses) . If the subgoals are inverted:

mother(X, Y) :- child(Y, X), \+ male(X).

the termchild(Y, X) unifies with the substitutiorX = penelope andY
= telemachus , and sincemale(penelope) is not in the database, the goal
mother(X, Y) succeeds.

Predicates similar to*” include if-then and if-then-else constructs. If-then is
expressed by the built-in> '/2 operator. Its syntax is

Condition -> Action
asin

print_if _parent(X, Y) :-
(parent(X, Y) -> write(X), nl, write(Y), nl).

?- print_if_parent(X, Y).
penelope
telemachus

X = penelope, Y = telemachus
Just like negation;>'/2 is defined using a cut:
->'(P, Q)- P, L, Q.

The if-then-else predicate is an extension-of "/2 with a second member to
the right. Its syntax is

Condition -> Then ; Else

If Condition succeedsThen is executed, otherwidglse is executed.

A.7.3 Theonce/ 1 Predicate

The built-in predicat®nce/1 also controls Prolog executioance(P) executes
P once and removes backtrack points from itPlis a conjunction of goals as in the
rule:

A - B1, B2, once((B3, ..., Bi)), Bi+1, ..., Bn.

A.8 Lists 455

the backtracking path goes directly frddp,; to Bo, skippingBs, ..., B ;. Itis
necessary to bracket the conjunction insitee twice because its arity is equal to
one. A single level of brackets, asamce(B 3, ..., B ;), would tell Prolog that
once/l has an arity of-3 .

once(Goal) is defined as:

once(Goal) :- Goal, !

A.8 Lists

Lists are data structures essential to many programs. A®list is a sequence of an
arbitrary number of terms separated by commas and enclag®d square brackets.
For example:

e J[a] isalist made of an atom.
* J[a, b] isalist made of two atoms.

* J[a, X, father(X, telemachus)] is a list made of an atom, a variable,
and a compound term.

* [[a, b], [[[father(X, telemachus)]]]] is a list made of two sub-
lists.

e [] isthe atom representing the empty list.

Although it is not obvious from these examples, Prolog kstsscompound terms
and the square bracketed notation is only a shortcut. Ttfeiistor is a dot: /2 7,
and[a, b] isequivalentto the term(a, . (b,[]))

Computationally, lists are recursive structures. Theysimof two parts: a head,
the first element of a list, and a tail, the remaining list withits first element. The
head and the tail correspond to the first and second argurhtére Brolog list func-
tor. Figure A.8 shows the term structure of the st b, c] . The tail of a list is
possibly empty as in(c,[]))

c I

Fig. A.8. The term structure of the liga, b, c]

456 A An Introduction to Prolog

The notation {” splits a list into its head and tail, arjti | T] is equivalent to
. (H, T) . Splitting a list enables us to access any element of it amcktare it is a
very frequent operation. Here are some examples of its use:

2-[a bl = [H | T].
H=a T = [b

?-[a] = [H | T]

H=a T =1
?-[a [P]] = [H | T]
H=a, T = [[b]]

?-[a, b, c, d =[X, Y | Tl
X=aY=b T=lc d

?-[[a, b, c], d, e] = [H | TI.
H=1[a b, c], T =[d, €]

The empty list cannot be split:

-0 =MH1TL
No

A.9 Some List-Handling Predicates

Many applications require extensive list processing. $higion describes some use-
ful predicates. Generally, Prolog systems provide a setudf-in list predicates.
Consult your manual to see which ones; there is no use ineetimg the wheel.

A.9.1 Thenenber/ 2 Predicate

Themember/2 predicate checks whether an element is a member of a list:

?- member(a, [b, ¢, a]).
Yes

?- member(a, [c, d]).
No

member/2 is defined as

member(X, [X | Y]). % Termination case
member(X, [Y | YS]) ;- % Recursive case
member(X, YS).

A.9 Some List-Handling Predicates 457

We could also use anonymous variables to improve legilalitgt rewritemem-
ber/2 as

member(X, [X | _]).
member(X, [_ | YS]) :- member(X, YS).

member/2 can be queried with variables to generate elements memladisbf
asin:

?- member(X, [a, b, c]).

X =a;
X = b ;
X =c;
No

Or lists containing an element:

?- member(a, 2).

Z=1a]|VY];
Z=1[Y, al|X];
etc.

Finally, the query:
?- \+ member(X, L).

whereX andL are ground variables, returi¥es if member(X, L) fails andNo if
it succeeds.

A.9.2 Theappend/ 3 Predicate

Theappend/3 predicate appends two lists and unifies the result to a thinahaent:

?- append([a, b, c], [d, e, f], [a, b, ¢, d, e, f]).
Yes

?- append([a, b], [c, d], [e, f]).
No

?- append([a, b], [c, d], L).
L =[a b, c, d]

?- append(L, [c, d], [a, b, c, d]).
L = [a b]

?- append(L1, L2, [a, b, c]).
L1 [, L2 = [a, b, €] ;
L1 = [a], L2 = [b,] ;

458 A An Introduction to Prolog

etc., with all the combinations.
append/3 is defined as

append([], L, L).
append([X | XS], YS, [X | Z29)]) :-
append(XS, YS, ZS).

A.9.3 Thedel et e/ 3 Predicate

The delete/3 predicate deletes a given element from a list. Its synopsis i
delete(List, Element, ListWithoutElement) . Itis defined as:

delete(], _, [I)-
delete([E | List], E, ListWithoutE):-
!!
delete(List, E, ListWithoutE).
delete([H | List], E, [H | ListWithoutE]):-
H \= E,
!!
delete(List, E, ListWithoutE).

The three clauses are mutually exclusive, and the cuts malassible to omit
the conditionH \= E in the second rule. This improves the program efficiency but
makes it less legible.

A.9.4 Thei nt er secti on/ 3 Predicate

Theintersection/3 predicate computes the intersection of two sets repredente
as listsintersection(InputSetl, InputSet2, Intersection)

?- intersection([a, b, c], [d, b, e, a], L).

L = [a, b]

InputSetl andlnputSet2 should be without duplicates; otherwise
intersection/3 approximates the intersection set relatively to the firguar
ment:

?- intersection([a, b, ¢, a], [d, b, e, a], L).
L = [a, b, 3]

The predicate is defined as:

% Termination case

intersection([], _, [])-

% Head of L1 is in L2

intersection([X | L1], L2, [X | L3]) :-
member(X, L2),

A.9 Some List-Handling Predicates 459

!!

intersection(L1, L2, L3).
% Head of L1 is not in L2
intersection([X | L1], L2, L3) :-

\+ member(X, L2),
|

intersection(L1, L2, L3).

As for delete/3 | clauses ofntersection/3 are mutually exclusive, and
the programmer can omit the conditigh member(X, L) in the third clause.

A.9.5 Ther ever se/ 2 Predicate

Thereverse/2 predicate reverses the elements of a list. There are twsiclas
ways to define it. The first definition is straightforward bahsumes much memory.
It is often called the naive reverse:

reverse([],[]).

reverse([X | XS], YS] :-
reverse(XS,, RXS),
append(RX, [X], Y).

A second solution improves the memory consumption. It ustbérd argument
as an accumulator.

reverse(X, Y) :-
reverse(X, [], Y).

reverse([], YS, YS).
reverse([X | XS], Accu, YS):-
reverse(XS, [X | Accu], YS).

A.9.6 The Mode of an Argument

Themode of an argument defines if it is typically an input)(or an output). In-
puts must be instantiated, while outputs are normally daintgated. Some predicates
have multiple modes of use. We saw three modesjppend/3 :

e append(+Listl, +List2, +List3) ,
e append(+Listl, +List2, -List3) ,and
e append(-Listl, -List2, +List3)

A question mark ?” denotes that an argument can either be instantiated or not.
Thus, the two first modes append/3 can be compacted inappend(+List1,
+List2, ?List3) . The actual mode adippend/3 , which describes all possi-
bilities is, in fact,append(?Listl, ?List2, ?List3) . Finally, “@ indi-
cates that the argument is normally a compound term thatremahin unaltered.

It is a good programming practice to annotate predicates thieir common
modes of use.

460 A An Introduction to Prolog

A.10 Operators and Arithmetic

A.10.1 Operators

Prolog defines a set of prefix, infix, and postfix operatorsithdtides the classical
arithmetic symbols:+”, “- ", “+” and “/ ". The Prolog interpreter considers opera-
tors as functors and transforms expressions into termss,Pht 3 + 4 * 2is
equivalent to+(* (2, 3), * (4, 2))

The mapping of operators onto terms is governed by rulesiofigrand classes
of associativity:

* The priority of an operator is an integer ranging from 1 t@Q2lt enables us to
determine recursively the principal functor of a term. Higipriority operators
will be higher in the tree representing a term.

« The associativity determines the bracketing of té&xnop B op C:

1. If op is left-associative, the termis reédl op B) op C ;
2. If op is right-associative, the termis readop (B op C) .

Prolog defines an operator by its namesjigcifier, and its priority. The specifier
is a mnemonic to denote the operator class of associatinidyndether it is infixed,
prefixed, or postfixed (Table A.2).

Table A.2. Operator specifiers.

Operator Nonassociative Right-associative Left-assodige

Infix xfx xfy yfx
Prefix fx fy -
Postfix xf - yf

Table A.3 shows the priority and specifier of predefined ojpesan Standard
Prolog.
It is possible to declare new operators using the directive:

:- op(+Priority, +Specifier, +Name).

A.10.2 Arithmetic Operations

The evaluation of an arithmetic expression usesisf#2 built-in operator.is/2
computes the value of tHexpression to the right of it and unifies it witlvalue :

?- Value is Expression.

whereExpression must be computable. Let us exemplify it. Recall first theit
does not evaluate the arithmetic expression:

A.10 Operators and Arithmetic 461

Table A.3. Priority and specifier of operators in Standard Prolog.

Priority Specifier Operators

1200 xfx - o>

1200 fx - ?-

1100 xfy

1050 xfy ->

1000 xfy)

900 fy \+

700 xfx = \=

700 xfx == \== @< @=< @> @>=
700 xfx =

700 xfx is == = \= < =< > >=
550 xfy

500 yix + - # \ \/

400 yfx * [/| rem mod << >>
200 xfx i

200 xfy °

200 fy + -\

22X =1+1+1
X=1+1+1(r X =++(1, 1), 1)).

To get a value, it is necessary to use

?2-X=1+1+1 Y is X
X=1+1+1 Y =3

If the arithmetic expression is not valid/2 returns an error, as in

?-Xisl1l+ 1+ a
Error

becausea is not a number, or asin

?-Xisl+ 1+ Z
Error

becausé& is not instantiated to a number. But

?-Z=2 Xisl1l+ 1+ Z
Z =2 X=4

is correct because has a numerical value whetis evaluated.

462 A An Introduction to Prolog
A.10.3 Comparison Operators

Comparison operators process arithmetic and literal sgpyas. They evaluate arith-
metic expressions to the left and to the right of the opetta¢éore comparing them,
for example:

?-1+2< 3+ 4.
Yes

Comparison operators for literal expressions rank terrograling to their lexical
order, for example:

?-a @< bh.
Yes

Standard Prolog defines a lexical ordering of terms that sethan the ASCII
value of characters and other considerations. Table A.wslaolist of comparison
operators for arithmetic and literal expressions.

Table A.4. Comparison operators.

Arithmetic comparison Literal term comparison
Equality operator == ==
Inequality operator =\= ==
Inferior < @<

Inferior or equal =< @=<
Superior > @>
Superior or equal >= @>=

Itis a common mistake of beginners to confuse the arithneeticparison£:=),
literal comparison#£=), and even sometimes unification)(Unification is a logi-
cal operation that finds two substitutions to render two teighentical; an arithmetic
comparison computes the numerical values of the left arnd egpressions and com-
pares their resulting value; a term comparison compareslivalues of terms but
does not perform any operation on them. Here are some example

?-1+2==2+ 1 ?-1+2=1+ 2
Yes Yes
?-1+2=2+ 1. ?-1+2 =2+ 1
No No
?-1+2=1+ 2. ?-1+ X==1+ 2
Yes No
?-1+X=1+ 2. ?-1+a=1+ a.
X =2 Yes

?-1+ X==1+ 2.
Error

A.10 Operators and Arithmetic 463
A.10.4 Lists and Arithmetic: The | engt h/ 2 Predicate

Thelength/2 predicate determines the length of a list

?- length([a, b, c], 3).
Yes

?- length([a, [a, b], c], N).
N =3

length(+List, ?N) traverses the lidtist and increments a countir Its
definition in Prolog is:

length([],0).

length([X | XS], N) :-
length(XS, N1),
N is N1 + 1.

The order of subgoals in the rule is significant becaN&ehas no value until
Prolog has traversed the whole list. This value is compuse®ralog pops the recur-
sive calls from the stack. Should subgoals be inverted,dhgpaitation of the length
would generate an error telling thigtl is not a number.

A.10.5 Lists and Comparison: Thequi cksort/ 2 Predicate

The quicksort/2 predicate sorts the elements of a [ist | T] . It first selects

an arbitrary element from the list to sort, here the héadt splits the list into two
sublists containing the elements smaller than this aryiglement and the elements
greater.Quicksort then sorts both sublists recursively and appends them once
they are sorted. In this program, thefore/2 predicate compares the list elements
using the@</2 literal operator.

% quicksort(+InputList, -SortedList)

quicksort([], D) - "
quicksort([H | T], LSorted) :-
split(H, T, LSmall, LBig),
quicksort(LSmall, LSmallSorted),
quicksort(LBig, LBigSorted),
append(LSmallSorted, [H | LBigSorted], LSorted).

split(X, [Y | L], [Y | LSmall], LBig) :-
before(Y, X),
L
split(X, L, LSmall, LBig).

split(X, [Y | L], LSmall, [Y | LBig]) :-
!

464 A An Introduction to Prolog

split(X, L, LSmall, LBig).
split, [, 0. I = &

before(X, Y) - X @< Y.

A.11 Some Other Built-in Predicates

The set of built-in predicates may vary according to Protoglementations. Here is
a list common to many Prologs. Consult your reference maouwve the complete
list.

A.11.1 Type Predicates

The type predicates check the type of a term. Their mode oisuse
type_predicate(?Term)

« integer/l :lIsthe argumentan integer?
?- integer(3).
Yes
?- integer(X).
No
e number/1 :Isthe argument a number?

?- number(3.14).
Yes

« float/1 :lIsthe argument a floating-point number?
e atom/l :lIsthe argument an atom?

?- atom(abc).
Yes

?- atom(3).
No

e atomic/l :Isthe argumentan atomic value, i.e., a number or an atom?
e var/l :lIstheargumenta variable?

?- var(X).

Yes

?- X = f(2), var(X).
No

e nonvar/l :The opposite ofar/1

A.11 Some Other Built-in Predicates 465
?- nonvar(X).
No
e compound/1l :Is the argument a compound term?
?- compound(X).
No
?- compound(f(X, Y)).
Yes
e ground/l :lIsthe argumenta ground term?
?- ground(f(a, b)).
Yes

?- ground(f(a, Y)).
No

A.11.2 Term Manipulation Predicates

The term manipulation predicates enable us to access anifiynetements of com-
pound terms.

e The built-in predicatdunctor(+Term, ?Functor, ?Arity) gets the
principal functor of a term and its arity.

?- functor(father(ulysses, telemachus), F, A).
F = father, A = 2

functor also returns the most general term given a functor name and an
arity. Functor and Arity must then be instantiatedunctor(-Term,
+Functor, +Arity)

?- functor(T, father, 2).
T = father(X, Y)

e The predicatarg(+N, +Term, ?X) unifiesXto the argument of rankl in
Term.

?- arg(1, father(ulysses, telemachus), X).
X = ulysses

e Theoperatoferm =.. List ,also known as thenivpredicate, transforms a
term into a list.

?- father(ulysses, telemachus) =.. L.
L = [father, ulysses, telemachus]

?-T =.]a, b, c].
T = a(b, ¢)

466 A An Introduction to Prolog

Univ has two modes of useTerm =.. ?List ,or-Term =.. +List
e The predicat@ame(?Atom, ?List) transforms an atom into a list of ASCI|I
codes.

?- name(abc, L).
L = [97, 98, 99]

?- name(A, [97, 98, 99]).
A = abc

Standard Prolog provides means to encode strings moreatigtusing double
guotes. Thus

?- "abc" = L.
L = [97, 98, 99]

A.12 Handling Run-Time Errors and Exceptions

Standard Prolog features a mechanism to handle run-tirneseAn error or excep-
tion occurs when the execution cannot be completed norradher successfully or
by a failure. Examples of exceptions include division byozehe attempt to eval-
uate arithmetically nonnumerical values witi2 , and calling a noninstantiated
variable in the body of a rule:

?- X is 1/0.
ERROR: //2: Arithmetic evaluation error: zero_divisor

?- Xis1+Y.
ERROR: Arguments are not sufficiently instantiated

?- X
ERROR: Arguments are not sufficiently instantiated

In the normal course of a program, such faulty clauses génesa-time errors
and stop the execution. The programmer can also trap thems and recover from
them using theatch/3 built-in predicate.

catch(+Goal, ?Catcher, ?Recover) execute$soal and behaves like
call/l ifnoerroroccurs. Ifan erroris raised and unifies vi@dtcher , catch/3
proceeds witlRecover and continues the execution.

Standard Prolog defines catchers of built-in predicatesutite form of the
termerror(ErrorTerm, Information) , WhereErrorTerm is a standard
description of the error anbhformation depends on the implementation. The
query:

?- catch((X is 1 + Y), Error, (write(Error),nl,fail)).
error(instantiation_error,

A.13 Dynamically Accessing and Updating the Database 467

context(system: (is)/2, _GXyz))

No
attempts to execut®¥ is Y + 1, raises an error, and executes the recover goal,
which prints the error and fails. The constamttantiation_error is part of

the set of error cases defined by Standard Prolog.

Built-in predicates executetrow/1 to raise exceptions when they detect an
error. Thethrow predicate immediately goes back to a callzach/3 . If there
is no suctcatch , by default, the execution is stopped and the control issfeaned

to the user.
User-defined predicates can also make udarafv(+Exception) to throw

an error, as in:
throw_error :- throw(error(error_condition,context)).
The corresponding error can be caught as in the query:

?- catch(throw_error, Error, (write(Error),nl,fail)).
error(error_condition, context)

No

A.13 Dynamically Accessing and Updating the Database

A.13.1 Accessing a Clause: Thel ause/ 2 Predicate

The built-in predicateclause(+Head, ?Body) returns the body of a clause
whose head unifies witHead. Let us illustrate this with the program:

hero(ulysses).
heroin(penelope).

daughter(X, Y) :-
mother(Y, X),
female(X).

daughter(X, Y) :-
father(Y, X),
female(X).

and the query:
?- clause(daughter(X, Y), B).

B = (mother(Y, X), female(X));
B = (father(Y, X), female(X));
No

?- clause(heroin(X), B).
X = penelope, B = true.

468 A An Introduction to Prolog
A.13.2 Dynamic and Static Predicates

The built-in predicateasserta/l ,assertz/1 ,retract/1 ,andabolish/1
add or remove clauses — rules and facts — during the exeaftiaprogram. They
allow to update the database — and hence to modify the progidymamically.

A major difference between Prolog implementations is weethe system in-
terprets the program or compiles it. Roughly, an interprdtees not change the
format of rules and facts to run them. A compiler translataases into a machine-
dependent code or into more efficient instructions (Maier\Afarren 1988). A com-
piled program runs much faster then.

Compiling occurs once at load time, and the resulting cod®ionger modifi-
able during execution. To run properly, the Prolog enginstibe told which pred-
icates are alterable at run-time — tthgnamic predicates — and which ones will re-
main unchanged — th&tatic predicates. Prolog compiles static predicates and runs
dynamic predicates using an interpreter.

A predicate is static by default. Dynamic predicates mukeeibe declared using
the dynamic/l1 directive or be entirely created by assertions at run timehée
latter case, the first assertion of a clause declares autmityathe new predicate
to be dynamic. The directive specifying that a predicateyisatinic precedes all its
clauses, if any. For example, the program:

.- dynamic parent/2, male/l.
parent(X, Y) :-

male(xy).

declaresthgtarent/2 andmale/l clauses may be added or removed at run time.
The predicatessserta/l , assertz/1 , retract/1 , andabolish/1

can modify clauses of dynamic predicates only. Adding oraeing a clause for

a static predicate raises an error condition.

A.13.3 Adding a Clause: Theassert a/ 1 andassert z/ 1 Predicates

The predicatasserta(+P) adds the clausP to the database? is inserted just
before the other clauses of the same predicate. As we hawdeéme, the predicate
corresponding to the claus& must be dynamic: declared using thgnamic/1
directive or entirely asserted at run time.

A.13 Dynamically Accessing and Updating the Database 469

% State of the database
% Before assertion
% hero(ulysses).
% hero(hector).
?- asserta(hero(achilles)).
% State of the database
% After assertion
% hero(achilles).
% hero(ulysses).
% hero(hector).

The predicatassertz/1 also adds a new clause, but as the last one of the proce-
dure this time.
Adding rules is similar. It requires double parenthesef as

asserta((P :- B, C, D)).

However, it is never advised to assert rules. Modifying subéhile running a
program is rarely useful and may introduce nasty bugs.

Novice Prolog programmers may try to communicate the resfla procedure
by asserting facts to the database. This is not a good pedmticause it hides what
is the real output of a predicate. Results, especially inégliate results, should be
passed along from one procedure to another using argurasestions should only
reflect a permanent change in the program state.

A.13.4 Removing Clauses: The et ract/ 1 and abol i sh/ 2 Predicates

The built-in predicatesetract/1 andabolish/1 remove clauses of a dynamic
predicateretract(+P) retracts claus® from the database.

% State of the database
% Before removal
% hero(ulysses).
% hero(achilles).
% hero(hector).
?- retract(hero(hector)).
% State of the database
% After
% hero(ulysses).
% hero(achilles).
?- retract(hero(X)).

X = ulysses ;
X = achilles ;
No

?- hero(X).

No

470 A An Introduction to Prolog

The predicat@abolish(+Predicate/Arity) removes all clauses &fredi-
cate with arity Arity from the database.

A.13.5 Handling Unknown Predicates

When a static predicate is called and is not in the database,often a bug. A
frequent cause is due to wrong typing as, for exampéenet(X, Y) instead of
parent(X, Y) , wheren ande are twiddled. For this reason, by default, Prolog
raises an error in the case of such a call.

An effect ofdynamic/1 is to declare a predicate to the Prolog engine. Such a
predicate ‘exists’ then, even if it has no clauses. A calldy@amic predicate that has
no clauses in the database is not considered as an errdls,Isfaply and silently.

The Prolog engine behavior to calls to unknown predicatedeanodified using
theunknown/2 directive:

- unknown(-OldValue, +NewValue).
whereOldValue andNewValue can be:

e warning - A call to an unknown predicate issues a warning and fails.

e error — A call to an unknown predicate raises an error. As we saw,ishihe
default value.

- fail — A calltoan unknown predicate fails silently.

A Prolog flag also defines this behavior. It can be sesdty prolog_flag/2
?- set _prolog_flag(+FlagName, +NewValue).

whereFlagName is set tounknown and possible values aegror , warning
orfail . The currentflag status is obtaineddyrrent_prolog_flag/2

?- current_prolog_flag(+FlagName, ?Value).

A.14 All-Solutions Predicates

The second-order predicatisdall/3 ,bagof/3 , andsetof/3 return all the
solutions to a given query. The predicéitedall is the basic form of all-solutions
predicates, whildagof andsetof are more elaborate. We exemplify them with
the database:

character(ulysses, iliad).
character(hector, iliad).
character(achilles, iliad).
character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).

A.15 Fundamental Search Algorithms 471

findall(+Variable, +Goal, ?Solution) unifies Solution with
the list of all the possible values ®fariable when queryingsoal .

?- findall(X, character(X, iliad), B).
B = [ulysses, hector, achilles]

?- findall(X, character(X, Y), B).
B = [ulysses, hector, achilles, ulysses, penelope,
telemachus]

The predicatebagof(+Variable, +Goal, ?Solution) is similar to
findall/3 , except that it backtracks on the free variable&o#l :

?- bagof(X, character(X, iliad), Bag).
Bag = [ulysses, hector, achilles]

?- bagof(X, character(X, Y), Bag).

Bag =[ulysses, hector, achilles], Y = iliad ;

Bag = [ulysses, penelope, telemachus], Y = odyssey ;
No.

Variables inGoal are not considered free if they are existentially quantified
The existential quantifier uses the infix operatot.“Let X be a variable irGoal .
X"Goal means that there existssuch thatGoal is true.bagof/3 does not back-
track on it. For example:

?- bagof(X, Y~character(X, Y), Bag).
Bag = [ulysses, hector, achilles, ulysses,
penelope, telemachus]

?- bagof(X, Y”~(character(X, Y), female(X)), Bag).
Bag = [penelope]

The predicatesetof(+Variable, +Goal, ?Solution) does the same
thing asbagof/3 , except that th&olution list is sorted and duplicates are re-
moved from it:

?- setof(X, Y”~character(X, Y), Bag).
Bag = [achilles, hector, penelope, telemachus,
ulysses]

A.15 Fundamental Search Algorithms

Many problems in logic can be represented using a graph @eawhere finding a
solution corresponds to searching a path going from arairgtate to a goal state.
The search procedure starts from an initial node, checkshehéhe current node

472 A An Introduction to Prolog

meets a goal condition, and if not, goes to a next node. Thsitran from one
node to a next one is carried out using a successor predécatehe solution is the
sequence of nodes traversed to reach the goal. In the caritegérch, the graph is
also called thestate space

In this section, we will review some fundamental searchtetjies and as an
application example, we will try to find our way through thdyainth shown in
Fig. A.9. As we saw, Prolog has an embedded search mechamigtrman be used
with little adaptation to implement other algorithms. Iihgrovide us with the Ari-
adne’s thread to remember our way in the maze with minimaihgpeifforts.

@

Fig. A.9. The graph representing the labyrinth.

A.15.1 Representing the Graph

We use a successor predica{X, Y) to represent the graph, wheYds the suc-
cessor oiX. For the labyrinth, the/2 predicate describes the immediate links from
one room to another. The links between rooms are:

link(rl, r2). link(r1, r3). link(rl, r4). link(rl,
r5). link(r2, r6). link(r2, r7). link(r3, r6).
link(r3, r7). link(r4, r7). link(r4, r8). link(r6,
ro).

Since links can be traversed both ways, $& predicate is:

A.15 Fundamental Search Algorithms 473

s(X, Y) :- link(X, Y).
s(X, Y) :- link(Y, X).

The goal is expressed as:

goal(X) :- minotaur(X).
where

minotaur(r8).

Finally, we could associate a cost to the link, for instama¢ake into account its
length. The predicate would then be:

s(X, Y, Cost).

A.15.2 Depth-First Search

A depth-first search is just the application of the Prologhason strategy. It ex-
plores the state space by traversing a sequence of succéssoe initial node until
it finds a goal. The search goes down the graph until it reaghmexle without suc-
cessor. It then backtracks from the bottom to the last noatehihs successors.
Searching a path in a labyrinth is then very similar to othegpams we have
written before. It consists of a first rule to describe thelgmmdition and sec-
ond recursive one to find a successor node when the condgioti met. The
depth_first_search(+Node, -Path) predicate uses the initial node as in-
put and returns the path to reach the goal:

%% depth_first_search(+Node, -Path)

depth_first_search(Node, [Node]) :-
goal(Node).

depth_first_search(Node, [Node | Path]) :-
s(Node, Nodel),
depth_first_search(Nodel, Path).

This short program does not work, however, because the patd aclude in-
finite cycles: Room 2 to Room 6 to Room 2 to Room 6...To preveatnt, we
need to remember the current path in an accumulator vareideto avoid the
successors of the current node that are already members gfatth. We use a
depth_first_search/3 auxiliary predicate, and the new program is:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, Path) :-
depth_first_search(Node, [], Path).

%% depth_first_search(+Node, +CurrentPath,-FinalPath)
depth_first_search(Node, Path, [Node | Path]) :-
goal(Node).

474 A An Introduction to Prolog

depth_first_search(Node, Path, FinalPath) :-
s(Node, Nodel),
\+ member(Nodel, Path),
depth_first_search(Nodel, [Node | Path],FinalPath).

The result of the search is:

?- depth_first_search(rl, L).

L = [r8, r4, r7, 13, 16, r2, r1] ;
L =[r8, r4, 17, r2, r1] ;

L =[r8, r4, 17, 12, 16, r3, rl] ;
L =[r8, r4, 17, r3, r1] ;

L = [r8, r4, r1] ;

No

?-

A.15.3 Breadth-First Search

The breadth-first search explores the paths in parallehitsswith the first node, all
the successors of the first node, all the successors of tkessars, and so on, until
it finds a solution.

If the list [Node | Path] describes a path to a node, the search needs to ex-
pand all the successorsdbde. It generates the corresponding paths as lists. There
are as many lists as there are successdwetie. The search then sets the successors
as the heads of these lists. This is done compactly usinigatbef/3 predicate:

expand([Node | Path], ExpandedPaths) :-
bagof(
[Nodel, Node | Path],
(s(Node, Nodel), \+ member(Nodel, Path)),
ExpandedPaths).

As with the depth-first search, the breadth-first searchistsnsf two rules. The
first rule describes the goal condition. It extracts the firath from the list and
checks whether the head node is a goal. The second rule iraptsrthe recur-
sion. It expands the first path — the head of the list — into tadfgpaths that go
one level deeper in the graph and appends them to the end oftteepaths. The
breadth_first_search(+Node, -Path) predicate uses the initial node as
input and returns the path to reach the goal. The progransrteexart with a list of
lists, and it uses the auxiliary predicdie search_aux/2

%% breadth_first_search(+Node, -Path)
breadth_first_search(Node, Path) :-
bf search_aux([[Node]], Path).

bf search_aux([[Node | Path] | _], [Node | Path]) :-
goal(Node).

A.15 Fundamental Search Algorithms 475

bf _search_aux([CurrentPath | NextPaths],
FinalPath) :-
expand(CurrentPath, ExpandedPaths),
append(NextPaths, ExpandedPaths, NewPaths),
bf search_aux(NewPaths, FinalPath).

The program is not completely correct, however, becaxgand/2 can fail
and make the whole search fail. A failureesfpand/2 means that the search cannot
go further in this path and it has found no goal node in it. e i@anove the path
from the list then. To reflect this, we must add a second ruéxpand/2 that sets
the path to the empty list and prevents the first rule from bracking:

expand([Node | Path], ExpandedPaths) :-
bagof(
[Nodel, Node | Path],
(s(Node, Nodel), \+ member(Nodel, Path)),
ExpandedPaths),
|

expand(Path, []).
The result of the search is:
?- breadth_first_search(rl, L).

L = [r8, r4, rl] ;

L =[r8, r4, 17, r2, r1] ;

L =[r8, r4, 17, r3, r1] ;

L =[r8, r4, r7, 13, 16, 12, r1] ;
L =[r8, r4, 17, r2, 16, r3, r1] ;
No

?-

The breadth-first search strategy guarantees that it willtfie shortest path to
the solution. A disadvantage is that it must store and miairatih exploration paths
in parallel. This requires a huge memory, even for a limitegksh depth.

A.15.4 A* Search

The A* search is a variation and an optimization of the briedulst search. Instead
of expanding the first path of the list, it uses heuristicsdieat a better candidate.
While searching the graph, A* associates a value to pathavietses. This value is
a functionf of the node being traversedi(n) at noden is the sum of two terms
f(n) = g(n) + h(n), whereg(n) is the length of the path used to reach nadend
h(n) is the estimate of the remaining length to reach the goal .nBden a given
node, A* ranks the possible subsequent nodes minimififig. It then explores
“best nodes” first and thus avoids a blind searching.

The main difficulty of the A* search is to find a suitalildunction. Its presenta-
tion is outside the scope of this appendix. Russell and R003) examine search
strategies in detail. Bratko (2001) describes an impleatént of A* in Prolog.

476 A An Introduction to Prolog

A.16 Input/Output

The first Prolog systems had only primitive input/outpuilfaes. Standard Prolog
defines a complete new set of predicates. They representoa ahgnge in the Pro-
log language, and although they are more flexible they areimgersally accepted
yet. This section introduces both sets of predicates. ltrmg Standard Prolog in-
put/output predicates and predicates conforming to therafddition of Edinburgh
Prolog. Most input/output predicates are determinishiaf ts, they give no alterna-
tive solutions upon backtracking.

A.16.1 Reading and Writing Characters with Edinburgh Prolog

In Edinburgh Prolog, reading characters from the keyboaddeiting to the screen

is carried out usinget0/1 andput/1 . Both predicates process characters using
their ASCII codesget0/1 unifies with—1 when it reaches the end of a file. Here
are some examples of use:

?- getO(X).
a?

X =97

?- put(65).
a

?- get0(X).
"D

X =-1

A.16.2 Reading and Writing Terms with Edinburgh Prolog

The built-in predicateread/1 andwrite/1 read and write terms from the current
input and output streameead(?Term) reads one term:

?- read(X).
character(ulysses, odyssey).

X = character(ulysses, odyssey)

where the input term must be terminated by a period. Wherhiegt¢he end of a
file, X unifies with the build-in atonend_of file

?- read(X).
"D
X = end_of file

A.16 Input/Output 477

Writing terms is similarwrite(+Term) writes one term to the current output
stream anahl/0 prints a new line:

?- T = character(ulysses, odyssey), write(T), nl.
character(ulysses, odyssey)

T = character(ulysses, odyssey)
?-

A.16.3 Opening and Closing Files with Edinburgh Prolog

Prolog input and output predicates normally write on thesor— the standard out-
put — and read from the keyboard — the standard input. Thegatedsee/1 and
tell/l redirect the input and output so that a program can read ¢e amiy file.

see/l andtell/l open a file for reading and for writing. Then input/output
predicates such aget0/1 , read/1 orput/l , write/l are redirected to the
current open file. Several files may be open at the same timepiidgram switches
between open files usingee/1 or tell/1 until they are closedseen/0 and
told/0 close the open input and the open output, respectively, etudrr to the
standard input/output, that is, to the keyboard and theescieet us show this with
an example.

see(in_file), Opensn_file as the current input stream.

see(user), The current stream becomes the user — the key-
board.

see(in_file), in_file becomes the current input stream
again with the reading the position it had before.

seen, Closes the current input stream. The current

stream becomes the keyboard.
seeing(IN_STREAM), IN_STREAM unifies with the current input

stream.

tell(out_file), Opensout_file as the current output stream
(creates a new file or empties a previously exist-
ing file).

telling(OUT_STREAM), OUT_STREAM unifies with the current output
stream.

tell(user), The current output stream becomes the user —
the screen.

told. Closes the current output stream. The current

output stream becomes the user.
Here is a short program to read a file:

read_file(FileName, CodelList) :-
see(FileName),
read_list(CodeList),

478 A An Introduction to Prolog

seen.

read_list([C | L]) :-
get0(C),
C =\= -1, % end of file
!!
read_list(L).

read_list([]).

A.16.4 Reading and Writing Characters with Standard Prolog

Standard Prolog uses streams to read and write charactestse#@m roughly cor-
responds to an open file. Streams are divided into outpursser sinks, and in-
put streams or sources. By default, there are two current sfpeams: the standard
input stream, which is usually the keyboard, and the stahdatput stream, the
screen. Other streams are opened and closed opey4 , open/3 , close/l
andclose/2

The predicates to read and write a charactegatechar/1 , get char/2
put_char/1 , andput_char/2

e get_char(?Char) unifiesChar with the next character of the current input
stream.

e get_char(+Stream, ?Char) unifiesChar with the next character of the
open input strearBtream . get_char/l andget char/2 predicates unify
with end_of _file when they reach the end of a file.

e put_char(+Char) writesChar to the current output stream.

e put_char(+Stream, ?Char) writesChar to the open outpustream .

« nl/0 andnl(+Stream) write a new line to the current output stream or to
Stream .

Here is a short example:

?- get_char(X).
a?

X = a

?- put_char(a).
a

?- get_char(X).
"D

X = end_of file

A.16 Input/Output 479

Instead of reading and writing characters, we may want td mrawrite their
numeric code, ASCII or Unicode, as with Edinburgh&t0/1 . The corresponding
Standard Prolog predicates ayet_code/l1 ,get _code/2 ,put_code/l ,and
put_code/2

The predicateget_char andget code read a character or a code, remove
it from the input stream, and move to the next character. $iomes it is useful to
read a character without removing it. The predicaisk_char andpeek_code
do just that. They unify with the current character but stetha same position and
leave the character in the stream.

A.16.5 Reading and Writing Terms with Standard Prolog

The Standard Prolog predicate=ad/1 andwrite/1l are identical to those of
Edinburgh Prolog:

* read(?Term) reads one term from the current input stream.
e write(+Term) writes a term to the current output stream.

read/2 andwrite/2 read and write terms from and to a file:

e read(+Stream, ?Term) reads a term frorstream .
e write(+Stream, ?Term) writes a term tdStream .

The predicatesead_term andwrite_term read and write terms with a list
of options, either to the currentinput/outpigiad_term/2 andwrite_term/2
or to a file,read_term/3 andwrite_term/3 . The options make it possible to
adjust the printing format, for instance. They may depentherimplementation and
the operating system. Consult your manual to have the cdeligé The predicates
read andwrite are equivalenttoead _term andwrite_term with an empty
list of options.

A.16.6 Opening and Closing Files with Standard Prolog

The predicates to open and close a streanppen/4 , open/3 , close/l , and
close/2

e open(+SourceSink, +Mode, -Stream) opens the filéSourceSink
in an input or outpuMode. TheMode value is one ofead , write , append ,
or update . Stream unifies with the opened stream and is used for the subse-
guent input or output operations.

e open(+SourceSink, +Mode, -Stream, +Options) opens the file
with a list of options.open/3 is equivalent toopen/4 with an empty list of
options. Consult your manual to have the complete list.

e close(+Stream) closes the streai@tream .

e close(+Stream, +Options) closes the streai@tream with a list of op-
tions.close/l is equivalent taclose/2 with an empty list of options.

480 A An Introduction to Prolog

Here is a short program to read a file with Standard Prologipaésk:

read_file(FileName, CharList) :-
open(FileName, read, Stream),
read_list(Stream, CharList),
close(Stream).

read_list(Stream, [C | L]) :-
get_char(Stream, C),
C \== end_of file, % end of file
|

read_list(Stream, L).
read_list(_, []).

Other useful predicates includerrent_input/1 , current_output/1 ,
set_input/l , andset_output/1

e current_input(?Stream) unifiesStream with the current input stream.
e current_output(?Stream) unifiesStream with the current output.

e set_input(+Stream) setsStream to be the current input stream.

e set_output(+Stream) setsStream to be the current output stream.

A.16.7 Writing Loops

Programmers sometimes wonder how to write iterative loapBrolog, especially
with input/output to read or to write a sequence of termssThinormally done with
arecursive rule, as to read a file. Counting numbers downa&estthe form:

countdown(X) :-
number(X),
X < 0.
countdown(X):-
number(X),
X >= 0,
write(X), nl,
NX is X - 1,
countdown(NX).

For example,

?- countdown(4).

NOFPDNWS

A.17 Developing Prolog Programs 481

In some other cases, backtracking using iygeat/O0 built-in predicate can
substitute a loop. Theepeat/0 definition is:

repeat.
repeat :- repeat.

repeat never fails and when inserted as a subgoal, any subsequekitdik-
ing goes back to it and the sequence of subgoals to its righteecuted again.
So, a sequence of subgoals can be executed any number ofutitiiles condition
is satisfied. Theead_write/1 predicate below reads and writes a sequence of
atoms until the atorend is encountered. It takes the form of a repetiticepeat)
of reading a ternX usingread/1 , writing it (write/1), and a final conditionX
== end). It corresponds to the rule:

read_write :-
repeat,
read(X),
write(X), nl,
X == end,
I

A.17 Developing Prolog Programs

A.17.1 Presentation Style

Programs are normally written once and then are possibtyaad modified several
times. A major concern of the programmer should be to wrigarchnd legible code.
It helps enormously with the maintenance and debuggingagams.

Before programming, it is essential first to have a good fdatimn and decom-
position of the problem. The program construction shoukhtheflect the logical
structure of the solution. Although this statement may sebwmious, its implemen-
tation is difficult in practice. Clarity in a program struotuis rarely attained from
the first time. First attempts are rarely optimal but Prologldes an incremental
development where parts of the solution can be improved.ugigd

A key to the good construction of a program is to name thingperly. Cryptic
predicates or variable names, suchsgstproc , def code , X, Ynn, and so on,
should be banned. It is not rare that one starts with a predicame and changes it
in the course of the development to reflect a better desoritf the solution.

Since Prolog code is compact, the code of a clause shoulddsetshremain
easy to understand, especially with recursive programgdéssary, the programmer
should decompose a clause into smaller subclauses. Cutsaads should be kept
to a minimum because they impair the declarativeness ofgrane. However, these
are general rules that sometimes are difficult to respechwheed matters most.

Before its code definition, a predicate should be describ@dimments together
with argument types and modes:

482 A An Introduction to Prolog

% predicate(+Argl, +Arg2, -Arg3).
% Does this and that
% Argl: list, Arg2: atom, Arg3: integer.

Clauses of a same predicate must be grouped together, egem# Prologs
permit clauses to be disjoined. The layout of clauses shalstiibe clear and adopt
common rules of typography. Insert a space after commastsy o instance. The
rule

predl :- pred2(c,d),e.f.

must be rejected because of sticking commas and obfuscatéid@te names. Goals
must be indented with tabulations, and there should be oigdesjoal per line. Then

A

oo

should be preferred to
A - B, C, D.

except when the body consists of a single goal. The rule
A - B.

is also acceptable.

A.17.2 Improving Programs

Once a program is written, it is generally possible to enbanchis section intro-
duces three techniques to improve program speed: goaliegdenemo functions,
and tail recursion.

Order of Goals. Ordering goals is meaningful for the efficiency of a progragn b
cause Prolog tries them from left to right. The idea is to exdilne search space as
much as possible from the first goals. If predicatehas 1000 solutions in 1 s and
p2 has 1 solution taking 1000 hours to compute, avoid conjancti

p1(X), p2(X).

A better ordering is:

p2(X), p1(X).

A.17 Developing Prolog Programs 483

Lemmas or Memo Functions. Lemmas are used to improve the program speed.
They are often exemplified with Fibonacci series. Fibon&ueigined around year
1200 how to estimate a population of rabbits, knowing that:

« A rabbit couple gives birth to another rabbit couple, ondenzand one female,
each month (one month of gestation).

e Avrabbit couple reproduces from the second month.

* Rabbits are immortal.

We can predict the number of rabbit couples at months a function of the
number of rabbit couples at month— 1 andn — 2:

rabbit(n) = rabbit(n — 1) + rabbit(n — 2)
A first implementation is straightforward from the formula:

fibonacci(1, 1).

fibonacci(2, 1).

fibonacci(M, N) :-
M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2.

However, this program has an expensive double recursiorttendame value
can be recomputed several times. A better solution is te §tifronacci values in the
database usingsserta/l . So an improved version is

fibonacci(1, 1).

fibonacci(2, 1).

fibonacci(M, N) :-
M > 2
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2,
asserta(fibonacci(M, N)).

The rule is then tried only if the value is not in the database.
The generic form of the lemma is:

lemma(P):-
P,
asserta((P :- 1).

with “! ” to avoid backtracking.

484 A An Introduction to Prolog

Tail Recursion. A tail recursion is a recursion where the recursive call &l#st
subgoal of the last rule, as in

f(X) - fact(X).
f(X) - gX, Y), f(Y).

Recursion is generally very demanding in terms of memoryclwgrows with
the number of recursive calls. A tail recursion is a speciecthat the interpreter
can transform into an iteration. Most Prolog systems retzggaind optimize it. They
execute a tail-recursive predicate with a constant meriney s

It is therefore significant not to invert clauses of the poeg program, as in

f(X) - a(X, Y), £(Y).

f(X) :- fact(X).
which is not tail recursive.

It is sometimes possible to transform recursive prediciatsa tail recursion
equivalent, adding a variable as fength/2

length(List, Length) :-
length(List, 0, Length).

length([], N, N).

length([X | L], N1, N) :-
N2 is N1 + 1,
length(L, N2, N).

Itis also sometimes possible to force a tail recursion uaiogt, for example,

f(X) - g%,), !, f(Y).
f(X) :- fact(X).

Exercises

A.1. Describe a fragment of your family using Prolog facts.

A.2. Using the model oparent/2 andancestor/2 , write rules describing fam-
ily relationships.

A.3. Write a program to describe routes between cities. Usmaect/2 predicate
to describe direct links between cities as facts, for exapgannect(paris,
london) , connect(london, edinburgh) , etc., and write theoute/2 re-
cursive predicate that finds a path between cities.

A.4. Unify the following pairs:

f(a(A, B), a) = f(C, A).
f(X, g(a, b)) = f(9(2), 9(z, X)).
f(X, g(a, b)) = f(9(2), 9(z, Y)).

A.5. Trace theson/2 program.

A.6. What is the effect of the query
?- f(X, X).

given the database:
f(X, Y) - L g(X), h(Y).
9(a).
g(b).
h(b).

A.7. What is the effect of the query
?- (X, X).

given the database:
9(a).
9(b).
h(b).

A.8. What is the effect of the query
?- (X, X).

given the database:

f(X, Y) - g(X), h(Y), .
a(a).
g(b).
h(b).

A.9. What is the effect of the query
?2-\+ (X, X).

A.17 Developing Prolog Programs

485

given the databases of the three previous exercises (Egsréi.6—A.8)? Provide

three answers.

A.10. Write thelast(?List, ?Element)
is the last element of the list.

A.11. Write the nth(?Nth, ?List, ?Element)
Element is theNth element of the list.

A.12. Write themaximum(+List, ?Element)

ment is the greatest of the list.

predicate that succeeddifement

predicate that succeeddife-

predicate that succeeds if

486 A An Introduction to Prolog

A.13. Write theflatten/2 predicate that flattens a list, i.e., removes nested lists:

?- flatten([a, [a, b, c], [[[d]]ll, L).
L =1[a a b, c, d]

A.14. Write thesubset(+Setl, +Set2) predicate that succeedsSktl is a
subset ofSet2 .

A.15. Write the subtract(+Setl, +Set2, ?Set3) predicate that unifies
Set3 with the subtraction o§et2 from Setl .

A.16. Write theunion(+Setl, +Set2, ?Set3) predicate that unifieSet3
with the union ofSet2 andSetl . Setl andSet2 are lists without duplicates.

A.17. Write a program that transforms the lowercase characteasfité into their
uppercase equivalent. The program should process acagrdeatters, for example,
éwill be mapped tcE.

A.18. Implement A* in Prolog.

