
A

An Introduction to Prolog

A.1 A Short Background

Prolog was designed in the 1970s by Alain Colmerauer and a team of researchers
with the idea – new at that time – that it was possible to use logic to represent knowl-
edge and to write programs. More precisely, Prolog uses a subset of predicate logic
and draws its structure from theoretical works of earlier logicians such as Herbrand
(1930) and Robinson (1965) on the automation of theorem proving.

Prolog was originally intended for the writing of natural language processing ap-
plications. Because of its conciseness and simplicity, it became popular well beyond
this domain and now has adepts in areas such as:

• Formal logic and associated forms of programming
• Reasoning modeling
• Database programming
• Planning, and so on.

This chapter is a short review of Prolog. In-depth tutorialsinclude: in English,
Bratko (2001), Clocksin and Mellish (2003), Covington et al. (1997), Sterling and
Shapiro (1994); in French, Giannesini et al. (1985); and in German, Bauman (1991).
Boizumault (1988, 1993) contain a didactical implementation of Prolog in Lisp. Pro-
log foundations rest on first-order logic. Apt (1997), Burkeand Foxley (1996), De-
lahaye (1986), and Lloyd (1987) examine theoretical links between this part of logic
and Prolog.

Colmerauer started his work at the University of Montréal, and a first version of
the language was implemented at the University of Marseilles in 1972. Colmerauer
and Roussel (1996) tell the story of the birth of Prolog, including their try-and-fail
experimentation to select tractable algorithms from the mass of results provided by
research in logic.

In 1995, the International Organization for Standardization (ISO) published a
standard on the Prolog programming language. Standard Prolog (Deransart et al.
1996) is becoming prevalent in the Prolog community and mostof the available



434 A An Introduction to Prolog

implementations now adopt it, either partly or fully. Unless specifically indicated,
descriptions in this chapter conform to the ISO standard, and examples should run
under any Standard Prolog implementation.

A.2 Basic Features of Prolog

A.2.1 Facts

Facts are statements that describe object properties or relations between objects. Let
us imagine we want to encode that Ulysses, Penelope, Telemachus, Achilles, and
others are characters of Homer’sIliad andOdyssey. This translates into Prolog facts
ended with a period:

character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
character(agamemnon, iliad).
character(patroclus, iliad).
character(hector, iliad).
character(andromache, iliad).
character(rhesus, iliad).
character(ulysses, iliad).
character(menelaus, iliad).
character(helen, iliad).

character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).
character(laertes, odyssey).
character(nestor, odyssey).
character(menelaus, odyssey).
character(helen, odyssey).
character(hermione, odyssey).

Such a collection of facts, and later, of rules, makes up adatabase. It transcribes
the knowledge of a particular situation into a logical format. Adding more facts to
the database, we express other properties, such as the gender of characters:

% Male characters % Female characters

male(priam). female(hecuba).
male(achilles). female(andromache).
male(agamemnon). female(helen).
male(patroclus). female(penelope).
male(hector).



A.2 Basic Features of Prolog 435

male(rhesus).
male(ulysses).
male(menelaus).
male(telemachus).
male(laertes).
male(nestor).

or relationships between characters such as parentage:

% Fathers % Mothers
father(priam, hector). mother(hecuba, hector).
father(laertes,ulysses). mother(penelope,telemachus) .
father(atreus,menelaus). mother(helen, hermione).
father(menelaus, hermione).
father(ulysses, telemachus).

Finally, would we wish to describe kings of some cities and their parties, this
would be done as:

king(ulysses, ithaca, achaean).
king(menelaus, sparta, achaean).
king(nestor, pylos, achaean).
king(agamemnon, argos, achaean).
king(priam, troy, trojan).
king(rhesus, thrace, trojan).

From these examples, we understand that the general form of aProlog fact is:
relation(object1, object2, ..., objectn) . Symbols or names rep-
resenting objects, such asulysses or penelope , are calledatoms. Atoms are
normally strings of letters, digits, or underscores “_”, and begin with a lowercase
letter. An atom can also be a string beginning with an uppercase letter or includ-
ing white spaces, but it must be enclosed between quotes. Thus ’Ulysses’ or
’Pallas Athena’ are legal atoms.

In logic, the name of the symbolicrelation is the predicate, the objects
object1 , object2 , . . . , objectn involved in the relation are thearguments,
and the numbern of the arguments is thearity . Traditionally, a Prolog predicate is in-
dicated by its name and arity:predicate/arity , for example,character/2 ,
king/3 .

A.2.2 Terms

In Prolog, all forms of data are calledterms. The constants, i.e., atoms or numbers,
are terms. The factking(menelaus, sparta, achaean) is a compound
term or astructure, that is, a term composed of other terms –subterms. The argu-
ments of this compound term are constants. They can also be other compound terms,
as in



436 A An Introduction to Prolog

character(priam, iliad, king(troy, trojan)).
character(ulysses, iliad, king(ithaca, achaean)).
character(menelaus, iliad, king(sparta, achaean)).

where the arguments of the predicatecharacter/3 are two atoms and a com-
pound term.

It is common to use trees to represent compound terms. The nodes of a tree are
then equivalent to the functors of a term. Figure A.1 shows examples of this.

Terms Graphical representations

male(ulysses)  male  

ulysses  

father(ulysses, telemachus)  father  

ulysses
s 

telemachus  

character(ulysses, odyssey,
king(ithaca, achaean))

 character  

ulysses  odyssey  king  

ithaca  achaean  

Fig. A.1. Graphical representations of terms.

Syntactically, a compound term consists of afunctor – the name of the re-
lation – and arguments. The leftmost functor of a term is theprincipal functor .
A same principal functor with a different arity correspondsto different predicates:
character/3 is thus different fromcharacter/2 . A constant is a special case
of a compound term with no arguments and an arity of 0. The constantabc can thus
be referred to asabc/0 .



A.2 Basic Features of Prolog 437

A.2.3 Queries

A query is a request to prove or retrieve information from thedatabase, for example,
if a fact is true. Prolog answers yes if it can prove it, that is, here if the fact is in
the database, or no if it cannot: if the fact is absent. The questionIs Ulysses a male?
corresponds to the query:

Query typed by the user

?- male(ulysses).
Answer from the Prolog engine

Yes

which has a positive answer. A same question with Penelope would give:

?- male(penelope).
No

because this fact is not in the database.
The expressionsmale(ulysses) or male(penelope) aregoalsto prove.

The previous queries consisted of single goals. Some questions require more goals,
such asIs Menelaus a male and is he the king of Sparta and an Achaean?, which
translates into:

?- male(menelaus), king(menelaus, sparta, achaean).
Yes

where “, ” is the conjunction operator. It indicates that Prolog has to prove both
goals. The simple queries have one goal to prove, while thecompound queriesare
a conjunction of two or more goals:

?- G1, G2, G3, ..., Gn.

Prolog proves the whole query by proving that all the goalsG1 . . .Gnare true.

A.2.4 Logical Variables

The logical variables are the last kind of Prolog terms. Syntactically, variables be-
gin with an uppercase letter, for example,X, Xyz , or an underscore “_”. Logical
variables stand for any term: constants, compound terms, and other variables. A
term containing variables such ascharacter(X, Y) can unify with a compat-
ible fact, such ascharacter(penelope, odyssey) , with thesubstitutions
X = penelope andY = odyssey .

When a query term contains variables, the Prolog resolutionalgorithm searches
terms in the database that unify with it. It then substitutesthe variables to the match-
ing arguments. Variables enable users to ask questions suchasWhat are the charac-
ters of the Odyssey?



438 A An Introduction to Prolog

The variable The query

?- character(X, odyssey).
The Prolog answer

X = ulysses

Or What is the city and the party of king Menelaus?etc.

?- king(menelaus, X, Y).
X = sparta, Y = achaean

?- character(menelaus, X, king(Y, Z)).
X = iliad, Y = sparta, Z = achaean

?- character(menelaus, X, Y).
X = iliad, Y = king(sparta, achaean)

When there are multiple solutions, Prolog considers the first fact to match the
query in the database. The user can type “; ” to get the next answers until there is no
more solution. For example:

The variable The query

?- male(X). Prolog answers, unifying X with a value

X = priam ; The user requests more answers, typing a semicolon

X = achilles ;

... Prolog proposes more solutions
No Until there are no more matching facts in the database

A.2.5 Shared Variables

Goals in a conjunctive query can share variables. This is useful to constrain argu-
ments of different goals to have a same value. To express the questionIs the king
of Ithaca also a father?in Prolog, we use the conjunction of two goalsking(X,
ithaca, Y) andfather(X, Z) , where the variableX is shared between goals:

?- king(X, ithaca, Y), father(X, Z).
X = ulysses, Y = achaean, Z = telemachus

In this query, we are not interested by the name of the child although Prolog
responds withZ = telemachus . We can indicate to Prolog that we do not need



A.2 Basic Features of Prolog 439

to know the values ofY and Z usinganonymous variables. We then replaceY
and Z with the symbol “_”, which does not return any value:

?- king(X, ithaca, _), father(X, _).
X = ulysses

A.2.6 Data Types in Prolog

To sum up, every data object in Prolog is a term. Terms divide into atomic terms,
variables, and compound terms (Fig. A.2).

 Terms 

Atomic terms 
(Constants) 

Variables Compound terms 
(Structures) 

Atoms Numbers 

Integers Floating point 
numbers 

Fig. A.2. Kinds of terms in Prolog.

Syntax of terms may vary according to Prolog implementations. You should con-
sult reference manuals for their specific details. Here is a list of simplified conven-
tions from Standard Prolog (Deransart et al. 1996):

• Atoms are sequences of letters, numbers, and/or underscores beginning with a
lowercase letter, asulysses , iSLanD3 , king_of_Ithaca .

• Some single symbols, called solo characters, are atoms:! ;
• Sequences consisting entirely of some specific symbols or graphic characters are

atoms: + - * / ˆ < = > ˜ : . ? @ # $ & \ ‘
• Any sequence of characters enclosed between single quotesis also an atom, as

’king of Ithaca’ . A quote within a quoted atom must be double quoted:
’I”m’

• Numbers are either decimal integers, as-19 , 1960 , octal integers when pre-
ceded by0o , as0o56 , hexadecimal integers when preceded by0x , as0xF4 , or
binary integers when preceded by0b , as0b101 .

• Floating-point numbers are digits with a decimal point, as3.14 , -1.5 . They
may contain an exponent, as23E-5 (23 10−5) or -2.3e5 (2.3 10−5).

• The ASCII numeric value of a characterx is denoted0’x , as0’a (97), 0’b
(98), etc.



440 A An Introduction to Prolog

• Variables are sequences of letters, numbers, and/or underscores beginning with
an uppercase letter or the underscore character.

• Compound terms consist of a functor, which must be an atom, followed immedi-
ately by an opening parenthesis, a sequence of terms separated by commas, and
a closing parenthesis.

Finally, Prolog uses two types of comments:

• Line comments go from the “%” symbol to the end of the line:
% This is a comment

• Multiline comments begin with a “/ * ” and end with a “* / ”:
/ *
this
is
a comment * /

A.2.7 Rules

Rules enable to derive a new property or relation from a set ofexisting ones. For
instance, the property of being the son of somebody corresponds to either the prop-
erty of having a father and being a male, or having a mother andbeing a male.
Accordingly, the Prolog predicateson(X, Y) corresponds either to conjunction
male(X), father(Y, X) , or to male(X), mother(Y, X) . Being a son
admits thus two definitions that are transcribed as two Prolog rules:

son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

More formally, rules consist of a term called thehead, followed by symbol “:- ”,
read if, and a conjunction of goals. They have the form:

HEAD :- G1, G2, G3, ... Gn.

where the conjunction of goals is thebody of the rule. The head is true if the body
is true. Variables of a rule are shared between the body and the head. Rules can be
queried just like facts:

?- son(telemachus, Y).
Y = ulysses;
Y = penelope;
No

Rules are a flexible way to deduce new information from a set offacts. The
parent/2 predicate is another example of a family relationship that is easy to
define using rules. Somebody is a parent if s/he is either a mother or a father:

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).



A.2 Basic Features of Prolog 441

Rules can call other rules as withgrandparent/2 . A grandparent is the parent
of a parent and is defined in Prolog as

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

whereZ is an intermediate variable shared between goals. It enables us to find the
link between the grandparent and the grandchild: a mother ora father.

We can generalize thegrandparent/2 predicate and writeancestor/2 .
We use two rules, one of them being recursive:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

This latter pattern is quite common of Prolog rules. One or more rules express a
general case using recursion. Another set of rules or facts describes simpler condi-
tions without recursion. They correspond to boundary casesand enable the recursion
to terminate.

A query about the ancestors of Hermione yields:

?- ancestor(X, hermione).
X= menelaus;
X = helen;
X = atreus;
No

Facts and rules are also calledclauses. A predicate is defined by a set of clauses
with the same principal functor and arity. Facts are indeed special cases of rules:
rules that are always true andrelation(X, Y) is equivalent torelation(X,
Y) :- true , wheretrue/0 is a built-in predicate that always succeeds. Most
Prolog implementations require clauses of the same name andarity to be grouped
together.

In the body of a rule, the comma “, ” represents a conjunction of goals. It is also
possible to use a disjunction with the operator “; ”. Thus:

A :-
B
;
C.

is equivalent to

A :- B.
A :- C.

However, “; ” should be used scarcely because it impairs somewhat the legibility
of clauses and programs. The latter form is generally better.



442 A An Introduction to Prolog

A.3 Running a Program

The set of facts and rules of a file makes up aProlog text or program. To run it and
use the information it contains, a Prolog system has to load the text and add it to the
current database in memory. Once Prolog is launched, it displays a prompt symbol
“?- ” and accepts commands from the user.

Ways to load a program are specific to each Prolog implementation. A user
should look them up in the reference manual because the current standard does
not define them. There are, however, two commands drawn from the Edinburgh
Prolog tradition (Pereira 1984) implemented in most systems: consult/1 and
reconsult/1 .

The predicateconsult/1 loads a file given as an argument and adds all the
clauses of the file to the current database in memory:

?- consult(file_name).

file_name must be an atom as, for example,

?- consult(’odyssey.pl’).

It is also possible to use the shortcut:

?- [file_name].

to load one file, for example,

?- [’odyssey.pl’].

or more files:

?- [file1, file2].

The predicatereconsult/1 is a variation ofconsult . Usually, a program-
mer writes a program, loads it usingconsult , runs it, debugs it, modifies the pro-
gram, and reloads the modified program until it is correct. While consult adds the
modified clauses to the old ones in the database,reconsult updates the database
instead. It loads the modified file and replaces clauses of existing predicates in the
database by new clauses contained in the file. If a predicate is in the file and not
in the database,reconsult simply adds its clauses. In some Prolog systems,
reconsult does not exist, andconsult discards existing clauses to replace them
by the new definition from the loaded file. Once a file is loaded,the user can run
queries.

The listing/0 built-in predicate displays all the clauses in the database, and
listing/1 , the definition of a specific predicate. Thelisting/1 argument for-
mat is eitherPredicate or Predicate/Arity :

?- listing(character/2).
character(priam, iliad).
character(hecuba, iliad).
character(achilles, iliad).
...



A.4 Unification 443

A program can also include directives, i.e., predicates to run at load time. A
directive is a rule without a head: a term or a conjunction of terms with a “:- ”
symbol to its left-hand side:

:- predicates_to_execute.

Directives are run immediately as they are encountered. If adirective is to be
executed once the program is completely loaded, it must occur at the end of the file.

Finally, halt/0 quits Prolog.

A.4 Unification

A.4.1 Substitution and Instances

When Prolog answers a query made of a termT containing variables, it applies asub-
stitution . This means that Prolog replaces variables inT by values so that it proves
T to be true. The substitution{X = ulysses, Y = odyssey} is a solu-
tion to the querycharacter(X, Y) because the factcharacter(ulysses,
odyssey) is in the database. In the same vein, the substitution{X = sparta,
Y = achaean} is a solution to the queryking(menelaus, X, Y) .

More formally, a substitution is a set{X1 = t1, X2 = t2, ..., Xn =
tn} , whereXi is a variable andti is a term. Applying a substitutionσ to a termT is
denotedTσ and corresponds to the replacement of all the occurrences ofvariableXi
with termti in T for i ranging from1 to n. Applying the (meaningless) substitution
σ1 = {X = ulysses} to the termT1 = king(menelaus, X, Y) yields
T1’ = king(menelaus, ulysses, Y) . Applying the substitutionσ2 = {X
= iliad, Y = king(sparta, achaean)} to the termT2 = charac-
ter(menelaus, X, Y) yieldsT2’ = character(menelaus, iliad,
king(sparta, achaean)) .

A termT ′ resulting from a substitutionTσ is aninstanceof T . More generally,
T ′ is an instance ofT if there is a substitution so thatT ′ = Tσ. If T ′ is an instance
of T , thenT is more generalthanT ′. Terms can be ordered according to possible
compositions of instantiations. For example,character(X, Y) is more general
than character(ulysses, odyssey) ; king(X, Y, Z) is more general
thanking(menelaus, Y, Z) , which is more general thanking(menelaus,
Y, achaean) , which is itself more general thanking(menelaus, sparta,
achaean) .

A substitution mapping a set of variables onto another set ofvariables such asσ
= {X = A, Y = B} onto termcharacter(X, Y) is arenaming substitution.
Initial and resulting termscharacter(X, Y) andcharacter(A, B) are said
to bealphabetical variants. Finally, aground term is a term that contains no vari-
able such asking(menelaus, sparta, achaean) .



444 A An Introduction to Prolog

A.4.2 Terms and Unification

To equate two terms,T1 andT2, Prolog uses unification, which substitutes variables
in the terms so that they are identical. Unification is a logical mechanism that carries
out a two-way matching, fromT1 to T2 and the reverse, and merges them into a
common term. Prolog unifies terms to solve equations such asT1 = T2 . It also uses
unification in queries to match a goal or a subgoal to the head of the rule. Figure A.3
shows the intuitive unification of terms

T1 = character(ulysses, Z, king(ithaca, achaean))

and

T2 = character(ulysses, X, Y)

through a graphical superposition.

 character  

ulysses  Z king  

ithaca  achaean  

character  

ulysses  X Y 

= 

Fig. A.3. Unification of terms: a graphical interpretation.

The superposition of the two terms requires finding an instance common to both
termsT1 andT2. This can be restated as there exist two substitutionsσ1 andσ2 such
thatT1σ1 = T2σ2. A unifier is a substitution makingT1 andT2 identical:T1σ =
T2σ. In our example, there is an infinite number of possible unifiers. Candidates
include the substitutionσ = {Z = c(a), X = c(a), Y = king(ithaca,
achaean)} , which yields the common instance:character(ulysses,c(a),
king(ithaca, achaean)) . They also includeσ = {Z = female, Z =
female, Y = king(ithaca, achaean)} , which yields another common
instance:character(ulysses, female, king(ithaca, achaean)) ,
etc.

Intuitively, these two previous unifiers are special cases of the unification ofT1
andT2. In fact, all the unifiers are instances of the substitutionσ = {X = Z, Y =
king(ithaca, achaean)} , which is themost general unifieror MGU .

Real Prolog systems display the unification ofT1 andT2 in a slightly different
way:

?- character(ulysses, Z, king(ithaca, achaean)) =
character(ulysses, X, Y).
X = _G123, Y = king(ithaca, achaean), Z = _G123



A.4 Unification 445

where_Gxyz are variable names internal to the Prolog system.

A.4.3 The Herbrand Unification Algorithm

The reference algorithm to unify terms is due to Herbrand (Herbrand 1930, Martelli
and Montanari 1982). It takes the two terms to unify as input.The output is either a
failure if terms do not unify or the MGU –σ.

The algorithm initializes the substitution to the empty setand pushes terms on
a stack. The main loop consists in popping terms, comparing their functors, and
pushing their arguments on the stack. When a variable is found, the corresponding
substitution is added toσ (Sterling and Shapiro 1994, Deransart et al. 1996).

• Initialization step
Initialize σ to {}
Initialize failure to false
Push the equationT1 = T2 on the stack

• Loop
repeat {

pop x = y from the stack
if x is a constant andx == y. Continue.
else if x is a variable andx does not appear iny.

Replacex with y in the stack and inσ. Add the substitution{x = y} to
σ.

else if x is a variable andx == y. Continue.
else if y is a variable andx is not a variable.

Pushy = x on the stack.
else if x andy are compounds withx = f(x1, ..., xn) andy = f(y1, ..., yn).

Push on the stackxi = yi for i ranging from 1 ton.
else Setfailure to true , andσ to {}. Break.

} until (stack 6= ∅)

A.4.4 Example

Let us exemplify the Herbrand algorithm with terms:f(g(X, h(X, b)), Z)
andf(g(a, Z), Y) . We will use a two-way stack: one for the left term and one
for the right term, and let us scan and push term arguments from right to left.

For the first iteration of the loop,x andy are compounds. After this iteration, the
stack looks like:

Left term of the stack (x) Right term of the stack (y)
g(X, h(X, b)) = g(a, Z)

Z = Y

with the substitutionσ = {}.
The second iteration pops the top terms of the left and right parts of the stack.

The loop condition corresponds to compound terms again. Thealgorithm pushes the
arguments of left and right terms on the stack:



446 A An Introduction to Prolog

Left term of the stack (x) Right term of the stack (y)
X = a

h(X, b) = Z
Z = Y

with the substitutionσ = {}.
The third iteration pops the equationX = a. The algorithm adds this substitution

to σ and carries out the substitution in the stack:

Left term of the stack (x) Right term of the stack (y)
h(X, b) ∼ h(a, b) = Z

Z = Y

with the substitutionσ = {X = a} .
The next iteration popsh(a, b) = Z , swaps the left and right terms, and

yields:

Left term of the stack (x) Right term of the stack (y)
Z = h(a, b)
Z = Y

The fifth iteration popsZ = h(a, b) and yields:

Left term of the stack (x) Right term of the stack (y)
Z ∼ h(a, b) = Y

with the substitutionσ = {X = a, Z = h(a, b) }.
Finally, we get the MGUσ = {X = a, Z = h(a, b), Y = h(a, b) }

that yields the unified termf(g(a, h(a, b)), h(a, b)) .

A.4.5 The Occurs-Check

The Herbrand algorithm specifies that variablesX or Y must not appear – occur – in
the right or left member of the equation to be a successful substitution. The unifica-
tion of X andf(X) should then fail becausef(X) containsX.

However, most Prolog implementations do not check the occurrence of variables
to keep the unification time linear on the size of the smallestof the terms being
unified (Pereira 1984). Thus, the unificationX = f(X) unfortunately succeeds re-
sulting in a stack overflow. The termf(X) infinitely replacesX in σ, yieldingX =
f(f(X)) , f(f(f(X))) , f(f(f(f(X)))) , etc., until the memory is exhausted.
It results into a system crash with many Prologs.

Although theoretically better, a unification algorithm that would implement an
occurs-check is not necessary most of the time. An experienced programmer will not
write unification equations with a potential occurs-check problem. That is why Pro-
log systems compromised the algorithm purity for speed. Should the occurs-check be
necessary, Standard Prolog provides theunify_with_occurs_check/2 built-
in predicate:



A.5 Resolution 447

?- unify_with_occurs_check(X, f(X)).
No

?- unify_with_occurs_check(X, f(a)).
X = f(a)

A.5 Resolution

A.5.1 Modus Ponens

The Prolog resolution algorithm is based on themodus ponensform of inference that
stems from traditional logic. The idea is to use a general rule – the major premise –
and a specific fact – the minor premise – like the famous:

All men are mortal
Socrates is a man

to conclude, in this case, that

Socrates is mortal

Table A.1 shows the modus ponens in the classical notation ofpredicate logic
and in Prolog.

Table A.1.The modus ponens notation in formal logic and its Prolog equivalent.

Formal notation Prolog notation
Facts α man(’Socrates’).
Rules α⇒ β mortal(X) :- man(X).
Conclusion β mortal(’Socrates’).

Prolog runs a reversed modus ponens. Using symbols in Table A.1, Prolog tries
to prove that a query (β) is a consequence of the database content (α,α⇒ β). Using
the major premise, it goes fromβ toα, and using the minor premise, fromα to true.
Such a sequence of goals is called aderivation. A derivation can be finite or infinite.

A.5.2 A Resolution Algorithm

Prolog uses a resolution algorithm to chain clauses mechanically and prove a query.
This algorithm is generally derived from Robinson’s resolution principle (1965),
known as the SLD resolution. SLD stands for “linear resolution” with a “selec-
tion function” for “definite clauses” (Kowalski and Kuehner1971). Here “definite
clauses” are just another name for Prolog clauses.



448 A An Introduction to Prolog

The resolution takes a program – a set of clauses, rules, and facts – and a query
Qas an input (Sterling and Shapiro 1994, Deransart et al. 1996). It considers a con-
junction of current goals to prove, called theresolvent, that it initializes withQ. The
resolution algorithm selects a goal from the resolvent and searches a clause in the
database so that the head of the clause unifies with the goal. It replaces the goal with
the body of that clause. The resolution loop replaces successively goals of the resol-
vent until they all reduce to true and the resolvent becomes empty. The output is then
a success with a possible instantiation of the query goalQ’ , or a failure if no rule
unifies with the goal. In case of success, the final substitution,σ, is the composition
of all the MGUs involved in the resolution restricted to the variables ofQ. This type
of derivation, which terminates when the resolvent is empty, is called arefutation .

• Initialization
Initialize Resolvent to Q, the initial goal of the resolution algorithm.
Initialize σ to {}
Initialize failure to false

• Loop with Resolvent = G1, G2, ..., Gi, ..., Gm

while (Resolvent 6= ∅) {
1. Select the goalGi ∈ Resolvent ;
2. If Gi == true , delete it and continue;
3. Select the ruleH :- B 1, ..., B n in the database such thatGi andH

unify with the MGU θ. If there is no such a rule then setfailure to
true ; break;

4. ReplaceGi with B1, ..., B n in Resolvent
% Resolvent = G 1,...,G i−1, B 1,...,B n, G i+1,..., G m

5. Apply θ to Resolvent and toQ;
6. Composeσ with θ to obtain the new currentσ;

}

Each goal in the resolvent – i.e., in the body of a rule – must bedifferent from a
variable. Otherwise, this goal must be instantiated to a nonvariable term before it is
called. Thecall/1 built-in predicate then executes it as in the rule:

daughter(X, Y) :-
mother(Y, X), G = female(X), call(G).

wherecall(G) solves the goalG just as if it werefemale(X) . In fact, Prolog
automatically insertscall/1 predicates when it finds that a goal is a variable.G is
thus exactly equivalent tocall(G) , and the rule can be rewritten more concisely
in:

daughter(X, Y) :-
mother(Y, X), G = female(X), G.

A.5.3 Derivation Trees and Backtracking

The resolution algorithm does not tell us how to select a goalfrom the resolvent. It
also does not tell how to select a clause in the program. In most cases, there is more



A.5 Resolution 449

than one choice. The selection order of goals is of no consequence because Prolog
has to prove all of them anyway. In practice, Prolog considers the leftmost goal of the
resolvent. The selection of the clause is more significant because some derivations
lead to a failure although a query can be proved by other derivations. Let us show
this with the program:

p(X) :- q(X), r(X).
q(a).
q(b).
r(b).
r(c).

and the query?- p(X) .
Let us compute the possible states of the resolvent along with the resolution’s

iteration count. The first resolvent (R1) is the query itself. The second resolvent (R2)
is the body ofp(X) : q(X), r(X) ; there is no other choice. The third resolvent
(R3) has two possible values because the leftmost subgoalq(X) can unify either
with the factsq(a) or q(b) . Subsequently, according to the fact selected and the
corresponding substitution, the derivation succeeds or fails (Fig. A.4).

R1: p(X)
?

?

y

R2: q(X), r(X)
σ ={X = a} ւ ց σ ={X = b}

R3: q(a), r(a) q(b), r(b)
?

?

y

?

?

y

R4: true, r(a) true, r(b)

failure
?

?

y

R5: true
success

Fig. A.4. The search tree and successive values of the resolvent.

The Prolog resolution can then be restated as a search, and the picture of succes-
sive states of the resolvent as a search tree. Now how does Prolog select a clause?
When more than one is possible, Prolog could expand the resolvent as many times
as there are clauses. This strategy would correspond to a breadth-first search. Al-
though it gives all the solutions, this is not the one Prolog employs because would be
unbearable in terms of memory.

Prolog uses a depth-first search strategy. It scans clauses from top to bottom and
selects the first one to match the leftmost goal in the resolvent. This sometimes leads
to a subsequent failure, as in our example, where the sequence of resolvents is first
p(X) , then the conjunctionq(X), r(X) , after thatq(a), r(a) , and finally the
goalr(a) , which is not in the database. Prolog uses a backtracking mechanism then.



450 A An Introduction to Prolog

During a derivation, Prolog keeps a record of backtrack points when there is a pos-
sible choice, that is, where more than one clause unifies withthe current goal. When
a derivation fails, Prolog backs up to the last point where itcould select another
clause, undoes the corresponding unification, and proceedswith the next possible
clause. In our example, it corresponds to resolvent R2 with the second possible uni-
fication:q(b) . The resolvent R3 is thenq(b), r(b) , which leads to a success.
Backtracking explores all possible alternatives until a solution is found or it reaches
a complete failure.

However, although the depth-first strategy enables us to explore most search
trees, it is only an approximation of a complete resolution algorithm. In some cases,
the search path is infinite, even when a solution exists. Consider the program:

p(X) :- p(X), q(X).
p(a).
q(a).

where the queryp(a) does not succeed because of Prolog’s order of rule selection.
Fortunately, most of the time there is a workaround. Here it suffices to invert the
order of the subgoals in the body of the rule.

A.6 Tracing and Debugging

Bugsare programming errors, that is, when a program does not do what we expect
from it. To isolate and remove them, the programmer uses adebugger. A debug-
ger enables programmers to trace the goal execution and unification step by step. It
would certainly be preferable to write bug-free programs, but to err is human. And
debugging remains, unfortunately, a frequent part of program development.

The Prolog debugger uses an execution model describing the control flow of a
goal (Fig. A.5). It is pictured as a box representing the goalpredicate with four ports,
where:

• The Call port corresponds to the invocation of the goal.
• If the goal is satisfied, the execution comes out through theExit port with a

possible unification.
• If the goal fails, the execution exits through the Fail port.
• Finally, if a subsequent goal fails and Prolog backtracks to try another clause of

the predicate, the execution re-enters the box through the Redo port.

 

p(X) 
Exit 

Redo 

Call 

Fail 

Fig. A.5. The execution model of Prolog.



A.6 Tracing and Debugging 451

The built-in predicatetrace/0 launches the debugger andnotrace/0 stops
it. The debugger may have different commands according to the Prolog system you
are using. Major ones are:

• creep to proceed through the execution ports. Simply type return to creep.
• skip to skip a goal giving the result without examining its subgoals. (types to

skip).
• retry starts the current goal again from an exit or redo port (typer ).
• fail makes a current goal to fail (typef ).
• abort to quit the debugger (typea).

Figure A.6 represents the rulep(X) :- q(X), r(X) , where the box corre-
sponding to the head encloses a chain of subboxes picturing the conjunction of goals
in the body. The debugger enters goal boxes using thecreep command.

 

Exit 

Redo 

Call 

Fail 

r(X) F 

C E 

R 
q(X) 

E 

R F 

C 

p(X) 

Fig. A.6. The execution box representing the rulep(X) :- q(X), r(X) .

As an example, let us trace the program:

p(X) :- q(X), r(X).
q(a).
q(b).
r(b).
r(c).

with the queryp(X) .

?- trace.
Yes
?- p(X).

Call: ( 7) p(_G106) ? creep
Call: ( 8) q(_G106) ? creep
Exit: ( 8) q(a) ? creep
Call: ( 8) r(a) ? creep
Fail: ( 8) r(a) ? creep
Redo: ( 8) q(_G106) ? creep
Exit: ( 8) q(b) ? creep
Call: ( 8) r(b) ? creep



452 A An Introduction to Prolog

Exit: ( 8) r(b) ? creep
Exit: ( 7) p(b) ? creep

X = b

A.7 Cuts, Negation, and Related Predicates

A.7.1 Cuts

The cut predicate, written “! ”, is a device to prune some backtracking alternatives.
It modifies the way Prolog explores goals and enables a programmer to control the
execution of programs. When executed in the body of a clause,the cut always suc-
ceeds and removes backtracking points set before it in the current clause. Figure A.7
shows the execution model of the rulep(X) :- q(X), !, r(X) that contains
a cut.

 

Exit 

Redo 

Call

Fail

r(X) 
F 

C E 

R 
q(X) 

E 

R F 

C 

!
E C 

p(X) 

Fig. A.7. The execution box representing the rulep(X) :- q(X), !, r(X) .

Let us suppose that a predicateP consists of three clauses:

P :- A 1, ..., A i, !, A i+1, ..., A n.
P :- B 1, ..., B m.
P :- C 1, ..., C p.

Executing the cut in the first clause has the following consequences:

1. All other clauses of the predicate below the clause containing the cut are pruned.
That is, here the two remaining clauses ofP will not be tried.

2. All the goals to the left of the cut are also pruned. That is,A1, ..., A i will
no longer be tried.

3. However, it will be possible to backtrack on goals to the right of the cut.

P :- A1, ..., Ai, !, A i+1, ..., A n.
P :- B1, ..., Bm.
P :- C1, ..., Cp.

Cuts are intended to improve the speed and memory consumption of a program.
However, wrongly placed cuts may discard some useful backtracking paths and solu-
tions. Then, they may introduce vicious bugs that are often difficult to track. There-
fore, cuts should be used carefully.



A.7 Cuts, Negation, and Related Predicates 453

An acceptable use of cuts is to express determinism. Deterministic predicates
always produce a definite solution; it is not necessary then to maintain backtracking
possibilities. A simple example of it is given by the minimumof two numbers:

minimum(X, Y, X) :- X < Y.
minimum(X, Y, Y) :- X >= Y.

Once the comparison is done, there is no means to backtrack because both clauses
are mutually exclusive. This can be expressed by adding two cuts:

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y) :- X >= Y, !.

Some programmers would rewriteminimum/3 using a single cut:

minimum(X, Y, X) :- X < Y, !.
minimum(X, Y, Y).

The idea behind this is that once Prolog has comparedX andY in the first clause,
it is not necessary to compare them again in the second one. Although the latter
program may be more efficient in terms of speed, it is obscure.In the first version
of minimum/3 , cuts respect the logical meaning of the program and do not impair
its legibility. Such cuts are calledgreen cuts. The cut in the secondminimum/3
predicate is to avoid writing a condition explicitly. Such cuts are error-prone and are
calledred cuts. Sometimes red cuts are crucial to a program but when overused, they
are a bad programming practice.

A.7.2 Negation

A logic program contains no negative information, only queries that can be proven or
not. The Prolog built-in negation corresponds to a query failure: the program cannot
prove the query. The negation symbol is written “\+” or not in older Prolog systems:

• If Gsucceeds then\+ Gfails.
• If Gfails then\+ Gsucceeds.

The Prolog negation is defined using a cut:

\+(P) :- P, !, fail.
\+(P) :- true.

wherefail/0 is a built-in predicate that always fails.
Most of the time, it is preferable to ensure that a negated goal is ground: all its

variables are instantiated. Let us illustrate it with the somewhat odd rule:

mother(X, Y) :- \+ male(X), child(Y, X).

and facts:



454 A An Introduction to Prolog

child(telemachus, penelope).
male(ulysses).
male(telemachus).

The query

?- mother(X, Y).

fails because the subgoalmale(X) is not ground and unifies with the fact
male(ulysses) . If the subgoals are inverted:

mother(X, Y) :- child(Y, X), \+ male(X).

the term child(Y, X) unifies with the substitutionX = penelope and Y
= telemachus , and sincemale(penelope) is not in the database, the goal
mother(X, Y) succeeds.

Predicates similar to “\+” include if-then and if-then-else constructs. If-then is
expressed by the built-in ’-> ’ /2 operator. Its syntax is

Condition -> Action

as in

print_if_parent(X, Y) :-
(parent(X, Y) -> write(X), nl, write(Y), nl).

?- print_if_parent(X, Y).
penelope
telemachus

X = penelope, Y = telemachus

Just like negation,’->’/2 is defined using a cut:

’->’(P, Q):- P, !, Q.

The if-then-else predicate is an extension of ’-> ’ /2 with a second member to
the right. Its syntax is

Condition -> Then ; Else

If Condition succeeds,Then is executed, otherwiseElse is executed.

A.7.3 Theonce/1 Predicate

The built-in predicateonce/1 also controls Prolog execution.once(P) executes
P once and removes backtrack points from it. IfP is a conjunction of goals as in the
rule:

A :- B1, B2, once((B3, ..., Bi)), Bi+1, ..., Bn.



A.8 Lists 455

the backtracking path goes directly fromBi+1 to B2, skippingB3, ..., B i. It is
necessary to bracket the conjunction insideonce twice because its arity is equal to
one. A single level of brackets, as inonce(B 3, ..., B i) , would tell Prolog that
once/1 has an arity ofi-3 .

once(Goal) is defined as:

once(Goal) :- Goal, !.

A.8 Lists

Lists are data structures essential to many programs. A Prolog list is a sequence of an
arbitrary number of terms separated by commas and enclosed within square brackets.
For example:

• [a] is a list made of an atom.
• [a, b] is a list made of two atoms.
• [a, X, father(X, telemachus)] is a list made of an atom, a variable,

and a compound term.
• [[a, b], [[[father(X, telemachus)]]]] is a list made of two sub-

lists.
• [] is the atom representing the empty list.

Although it is not obvious from these examples, Prolog listsare compound terms
and the square bracketed notation is only a shortcut. The list functor is a dot: “./2 ”,
and[a, b] is equivalent to the term.(a, .(b,[])) .

Computationally, lists are recursive structures. They consist of two parts: a head,
the first element of a list, and a tail, the remaining list without its first element. The
head and the tail correspond to the first and second argument of the Prolog list func-
tor. Figure A.8 shows the term structure of the list[a, b, c] . The tail of a list is
possibly empty as in.(c,[])) .

 .  

.  

.  

[]  

a 

b 

c 

Fig. A.8. The term structure of the list[a, b, c] .



456 A An Introduction to Prolog

The notation “|” splits a list into its head and tail, and[H | T] is equivalent to
.(H, T) . Splitting a list enables us to access any element of it and therefore it is a
very frequent operation. Here are some examples of its use:

?- [a, b] = [H | T].
H = a, T = [b]

?- [a] = [H | T].
H = a, T = []

?- [a, [b]] = [H | T].
H = a, T = [[b]]

?- [a, b, c, d] = [X, Y | T].
X = a, Y = b, T = [c, d]

?- [[a, b, c], d, e] = [H | T].
H = [a, b, c], T = [d, e]

The empty list cannot be split:

?- [] = [H | T].
No

A.9 Some List-Handling Predicates

Many applications require extensive list processing. Thissection describes some use-
ful predicates. Generally, Prolog systems provide a set of built-in list predicates.
Consult your manual to see which ones; there is no use in reinventing the wheel.

A.9.1 Themember/2 Predicate

Themember/2 predicate checks whether an element is a member of a list:

?- member(a, [b, c, a]).
Yes

?- member(a, [c, d]).
No

member/2 is defined as

member(X, [X | Y]). % Termination case
member(X, [Y | YS]) :- % Recursive case

member(X, YS).



A.9 Some List-Handling Predicates 457

We could also use anonymous variables to improve legibilityand rewritemem-
ber/2 as

member(X, [X | _]).
member(X, [_ | YS]) :- member(X, YS).

member/2 can be queried with variables to generate elements member ofa list,
as in:

?- member(X, [a, b, c]).
X = a ;
X = b ;
X = c ;
No

Or lists containing an element:

?- member(a, Z).
Z = [a | Y] ;
Z = [Y, a | X] ;
etc.

Finally, the query:

?- \+ member(X, L).

whereX andL are ground variables, returnsYes if member(X, L) fails andNo if
it succeeds.

A.9.2 Theappend/3 Predicate

Theappend/3 predicate appends two lists and unifies the result to a third argument:

?- append([a, b, c], [d, e, f], [a, b, c, d, e, f]).
Yes

?- append([a, b], [c, d], [e, f]).
No

?- append([a, b], [c, d], L).
L = [a, b, c, d]

?- append(L, [c, d], [a, b, c, d]).
L = [a, b]

?- append(L1, L2, [a, b, c]).
L1 = [], L2 = [a, b, c] ;
L1 = [a], L2 = [b, c] ;



458 A An Introduction to Prolog

etc., with all the combinations.
append/3 is defined as

append([], L, L).
append([X | XS], YS, [X | ZS]) :-

append(XS, YS, ZS).

A.9.3 Thedelete/3 Predicate

The delete/3 predicate deletes a given element from a list. Its synopsis is:
delete(List, Element, ListWithoutElement) . It is defined as:

delete([], _, []).
delete([E | List], E, ListWithoutE):-

!,
delete(List, E, ListWithoutE).

delete([H | List], E, [H | ListWithoutE]):-
H \= E,
!,
delete(List, E, ListWithoutE).

The three clauses are mutually exclusive, and the cuts make it possible to omit
the conditionH \= E in the second rule. This improves the program efficiency but
makes it less legible.

A.9.4 Theintersection/3 Predicate

Theintersection/3 predicate computes the intersection of two sets represented
as lists:intersection(InputSet1, InputSet2, Intersection) .

?- intersection([a, b, c], [d, b, e, a], L).
L = [a, b]

InputSet1 andInputSet2 should be without duplicates; otherwise
intersection/3 approximates the intersection set relatively to the first argu-
ment:

?- intersection([a, b, c, a], [d, b, e, a], L).
L = [a, b, a]

The predicate is defined as:

% Termination case
intersection([], _, []).
% Head of L1 is in L2
intersection([X | L1], L2, [X | L3]) :-

member(X, L2),



A.9 Some List-Handling Predicates 459

!,
intersection(L1, L2, L3).

% Head of L1 is not in L2
intersection([X | L1], L2, L3) :-

\+ member(X, L2),
!,
intersection(L1, L2, L3).

As for delete/3 , clauses ofintersection/3 are mutually exclusive, and
the programmer can omit the condition\+ member(X, L 2) in the third clause.

A.9.5 Thereverse/2 Predicate

The reverse/2 predicate reverses the elements of a list. There are two classic
ways to define it. The first definition is straightforward but consumes much memory.
It is often called the naïve reverse:

reverse([],[]).
reverse([X | XS], YS] :-

reverse(XS,, RXS),
append(RX, [X], Y).

A second solution improves the memory consumption. It uses athird argument
as an accumulator.

reverse(X, Y) :-
reverse(X, [], Y).

reverse([], YS, YS).
reverse([X | XS], Accu, YS):-

reverse(XS, [X | Accu], YS).

A.9.6 The Mode of an Argument

Themodeof an argument defines if it is typically an input (+) or an output (- ). In-
puts must be instantiated, while outputs are normally uninstantiated. Some predicates
have multiple modes of use. We saw three modes forappend/3 :

• append(+List1, +List2, +List3) ,
• append(+List1, +List2, -List3) , and
• append(-List1, -List2, +List3) .

A question mark “?” denotes that an argument can either be instantiated or not.
Thus, the two first modes ofappend/3 can be compacted intoappend(+List1,
+List2, ?List3) . The actual mode ofappend/3 , which describes all possi-
bilities is, in fact,append(?List1, ?List2, ?List3) . Finally, “@” indi-
cates that the argument is normally a compound term that shall remain unaltered.

It is a good programming practice to annotate predicates with their common
modes of use.



460 A An Introduction to Prolog

A.10 Operators and Arithmetic

A.10.1 Operators

Prolog defines a set of prefix, infix, and postfix operators thatincludes the classical
arithmetic symbols: “+”, “ - ”, “ * ”, and “/ ”. The Prolog interpreter considers opera-
tors as functors and transforms expressions into terms. Thus, 2 * 3 + 4 * 2 is
equivalent to+( * (2, 3), * (4, 2)) .

The mapping of operators onto terms is governed by rules of priority and classes
of associativity:

• The priority of an operator is an integer ranging from 1 to 1200. It enables us to
determine recursively the principal functor of a term. Higher-priority operators
will be higher in the tree representing a term.

• The associativity determines the bracketing of termA op B op C:
1. If op is left-associative, the term is read(A op B) op C ;
2. If op is right-associative, the term is readA op (B op C) .

Prolog defines an operator by its name, itsspecifier, and its priority. The specifier
is a mnemonic to denote the operator class of associativity and whether it is infixed,
prefixed, or postfixed (Table A.2).

Table A.2.Operator specifiers.

Operator Nonassociative Right-associative Left-associative
Infix xfx xfy yfx
Prefix fx fy –
Postfix xf – yf

Table A.3 shows the priority and specifier of predefined operators in Standard
Prolog.
It is possible to declare new operators using the directive:

:- op(+Priority, +Specifier, +Name).

A.10.2 Arithmetic Operations

The evaluation of an arithmetic expression uses theis/2 built-in operator.is/2
computes the value of theExpression to the right of it and unifies it withValue :

?- Value is Expression.

whereExpression must be computable. Let us exemplify it. Recall first that “=”
does not evaluate the arithmetic expression:



A.10 Operators and Arithmetic 461

Table A.3. Priority and specifier of operators in Standard Prolog.

Priority Specifier Operators
1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ’,’
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..
700 xfx is =:= = \= < =< > >=
550 xfy :
500 yfx + - # / \ \/
400 yfx * / // rem mod << >>
200 xfx **
200 xfy ˆ
200 fy + - \

?- X = 1 + 1 + 1.
X = 1 + 1 + 1 (or X = +(+(1, 1), 1)).

To get a value, it is necessary to useis

?- X = 1 + 1 + 1, Y is X.
X = 1 + 1 + 1, Y = 3.

If the arithmetic expression is not valid,is/2 returns an error, as in

?- X is 1 + 1 + a.
Error

becausea is not a number, or as in

?- X is 1 + 1 + Z.
Error

becauseZ is not instantiated to a number. But

?- Z = 2, X is 1 + 1 + Z.
Z = 2, X = 4

is correct becauseZ has a numerical value whenX is evaluated.



462 A An Introduction to Prolog

A.10.3 Comparison Operators

Comparison operators process arithmetic and literal expressions. They evaluate arith-
metic expressions to the left and to the right of the operatorbefore comparing them,
for example:

?- 1 + 2 < 3 + 4.
Yes

Comparison operators for literal expressions rank terms according to their lexical
order, for example:

?- a @< b.
Yes

Standard Prolog defines a lexical ordering of terms that is based on the ASCII
value of characters and other considerations. Table A.4 shows a list of comparison
operators for arithmetic and literal expressions.

Table A.4.Comparison operators.

Arithmetic comparison Literal term comparison
Equality operator =:= ==
Inequality operator =\= \==
Inferior < @<
Inferior or equal =< @=<
Superior > @>
Superior or equal >= @>=

It is a common mistake of beginners to confuse the arithmeticcomparison (=:= ),
literal comparison (==), and even sometimes unification (=). Unification is a logi-
cal operation that finds two substitutions to render two terms identical; an arithmetic
comparison computes the numerical values of the left and right expressions and com-
pares their resulting value; a term comparison compares literal values of terms but
does not perform any operation on them. Here are some examples:

?- 1 + 2 =:= 2 + 1.
Yes

?- 1 + 2 == 1 + 2.
Yes

?- 1 + 2 = 2 + 1.
No

?- 1 + 2 == 2 + 1.
No

?- 1 + 2 = 1 + 2.
Yes

?- 1 + X == 1 + 2.
No

?- 1 + X = 1 + 2.
X = 2

?- 1 + a == 1 + a.
Yes

?- 1 + X =:= 1 + 2.
Error



A.10 Operators and Arithmetic 463

A.10.4 Lists and Arithmetic: The length/2 Predicate

The length/2 predicate determines the length of a list

?- length([a, b, c], 3).
Yes

?- length([a, [a, b], c], N).
N = 3

length(+List, ?N) traverses the listList and increments a counterN. Its
definition in Prolog is:

length([],0).
length([X | XS], N) :-

length(XS, N1),
N is N1 + 1.

The order of subgoals in the rule is significant becauseN1 has no value until
Prolog has traversed the whole list. This value is computed as Prolog pops the recur-
sive calls from the stack. Should subgoals be inverted, the computation of the length
would generate an error telling thatN1 is not a number.

A.10.5 Lists and Comparison: Thequicksort/2 Predicate

Thequicksort/2 predicate sorts the elements of a list[H | T] . It first selects
an arbitrary element from the list to sort, here the head,H. It splits the list into two
sublists containing the elements smaller than this arbitrary element and the elements
greater.Quicksort then sorts both sublists recursively and appends them once
they are sorted. In this program, thebefore/2 predicate compares the list elements
using the@</2 literal operator.

% quicksort(+InputList, -SortedList)

quicksort([], []) :- !.
quicksort([H | T], LSorted) :-

split(H, T, LSmall, LBig),
quicksort(LSmall, LSmallSorted),
quicksort(LBig, LBigSorted),
append(LSmallSorted, [H | LBigSorted], LSorted).

split(X, [Y | L], [Y | LSmall], LBig) :-
before(Y, X),
!,
split(X, L, LSmall, LBig).

split(X, [Y | L], LSmall, [Y | LBig]) :-
!,



464 A An Introduction to Prolog

split(X, L, LSmall, LBig).
split(_, [], [], []) :- !.

before(X, Y) :- X @< Y.

A.11 Some Other Built-in Predicates

The set of built-in predicates may vary according to Prolog implementations. Here is
a list common to many Prologs. Consult your reference manualto have the complete
list.

A.11.1 Type Predicates

The type predicates check the type of a term. Their mode of useis
type_predicate(?Term) .

• integer/1 : Is the argument an integer?

?- integer(3).
Yes

?- integer(X).
No

• number/1 : Is the argument a number?

?- number(3.14).
Yes

• float/1 : Is the argument a floating-point number?
• atom/1 : Is the argument an atom?

?- atom(abc).
Yes

?- atom(3).
No

• atomic/1 : Is the argument an atomic value, i.e., a number or an atom?
• var/1 : Is the argument a variable?

?- var(X).
Yes

?- X = f(Z), var(X).
No

• nonvar/1 : The opposite ofvar/1 .



A.11 Some Other Built-in Predicates 465

?- nonvar(X).
No

• compound/1 : Is the argument a compound term?

?- compound(X).
No

?- compound(f(X, Y)).
Yes

• ground/1 : Is the argument a ground term?

?- ground(f(a, b)).
Yes

?- ground(f(a, Y)).
No

A.11.2 Term Manipulation Predicates

The term manipulation predicates enable us to access and modify elements of com-
pound terms.

• The built-in predicatefunctor(+Term, ?Functor, ?Arity) gets the
principal functor of a term and its arity.

?- functor(father(ulysses, telemachus), F, A).
F = father, A = 2

functor also returns the most general term given a functor name and an
arity. Functor and Arity must then be instantiated:functor(-Term,
+Functor, +Arity)

?- functor(T, father, 2).
T = father(X, Y)

• The predicatearg(+N, +Term, ?X) unifiesX to the argument of rankN in
Term.

?- arg(1, father(ulysses, telemachus), X).
X = ulysses

• The operatorTerm =.. List , also known as theunivpredicate, transforms a
term into a list.

?- father(ulysses, telemachus) =.. L.
L = [father, ulysses, telemachus]

?- T =.. [a, b, c].
T = a(b, c)



466 A An Introduction to Prolog

Univ has two modes of use:+Term =.. ?List , or -Term =.. +List .
• The predicatename(?Atom, ?List) transforms an atom into a list of ASCII

codes.

?- name(abc, L).
L = [97, 98, 99]

?- name(A, [97, 98, 99]).
A = abc

Standard Prolog provides means to encode strings more naturally using double
quotes. Thus

?- "abc" = L.
L = [97, 98, 99]

A.12 Handling Run-Time Errors and Exceptions

Standard Prolog features a mechanism to handle run-time errors. An error or excep-
tion occurs when the execution cannot be completed normallyeither successfully or
by a failure. Examples of exceptions include division by zero, the attempt to eval-
uate arithmetically nonnumerical values withis/2 , and calling a noninstantiated
variable in the body of a rule:

?- X is 1/0.
ERROR: //2: Arithmetic evaluation error: zero_divisor

?- X is 1 + Y.
ERROR: Arguments are not sufficiently instantiated

?- X.
ERROR: Arguments are not sufficiently instantiated

In the normal course of a program, such faulty clauses generate run-time errors
and stop the execution. The programmer can also trap these errors and recover from
them using thecatch/3 built-in predicate.

catch(+Goal, ?Catcher, ?Recover) executesGoal and behaves like
call/1 if no error occurs. If an error is raised and unifies withCatcher , catch/3
proceeds withRecover and continues the execution.

Standard Prolog defines catchers of built-in predicates under the form of the
termerror(ErrorTerm, Information) , whereErrorTerm is a standard
description of the error andInformation depends on the implementation. The
query:

?- catch((X is 1 + Y), Error, (write(Error),nl,fail)).
error(instantiation_error,



A.13 Dynamically Accessing and Updating the Database 467

context(system: (is)/2, _GXyz))

No

attempts to executeX is Y + 1 , raises an error, and executes the recover goal,
which prints the error and fails. The constantinstantiation_error is part of
the set of error cases defined by Standard Prolog.

Built-in predicates execute athrow/1 to raise exceptions when they detect an
error. Thethrow predicate immediately goes back to a callingcatch/3 . If there
is no suchcatch , by default, the execution is stopped and the control is transferred
to the user.

User-defined predicates can also make use ofthrow(+Exception) to throw
an error, as in:

throw_error :- throw(error(error_condition,context)).

The corresponding error can be caught as in the query:

?- catch(throw_error, Error, (write(Error),nl,fail)).
error(error_condition, context)

No

A.13 Dynamically Accessing and Updating the Database

A.13.1 Accessing a Clause: Theclause/2 Predicate

The built-in predicateclause(+Head, ?Body) returns the body of a clause
whose head unifies withHead. Let us illustrate this with the program:

hero(ulysses).
heroin(penelope).

daughter(X, Y) :-
mother(Y, X),
female(X).

daughter(X, Y) :-
father(Y, X),
female(X).

and the query:

?- clause(daughter(X, Y), B).
B = (mother(Y, X), female(X));
B = (father(Y, X), female(X));
No

?- clause(heroin(X), B).
X = penelope, B = true.



468 A An Introduction to Prolog

A.13.2 Dynamic and Static Predicates

The built-in predicatesasserta/1 , assertz/1 , retract/1 , andabolish/1
add or remove clauses – rules and facts – during the executionof a program. They
allow to update the database – and hence to modify the program– dynamically.

A major difference between Prolog implementations is whether the system in-
terprets the program or compiles it. Roughly, an interpreter does not change the
format of rules and facts to run them. A compiler translates clauses into a machine-
dependent code or into more efficient instructions (Maier and Warren 1988). A com-
piled program runs much faster then.

Compiling occurs once at load time, and the resulting code isno longer modifi-
able during execution. To run properly, the Prolog engine must be told which pred-
icates are alterable at run-time – thedynamic predicates – and which ones will re-
main unchanged – thestatic predicates. Prolog compiles static predicates and runs
dynamic predicates using an interpreter.

A predicate is static by default. Dynamic predicates must either be declared using
the dynamic/1 directive or be entirely created by assertions at run time. In the
latter case, the first assertion of a clause declares automatically the new predicate
to be dynamic. The directive specifying that a predicate is dynamic precedes all its
clauses, if any. For example, the program:

:- dynamic parent/2, male/1.
...
parent(X, Y) :-
...
male(xy).
...

declares thatparent/2 andmale/1 clauses may be added or removed at run time.
The predicatesasserta/1 , assertz/1 , retract/1 , and abolish/1

can modify clauses of dynamic predicates only. Adding or removing a clause for
a static predicate raises an error condition.

A.13.3 Adding a Clause: Theasserta/1 and assertz/1 Predicates

The predicateasserta(+P) adds the clauseP to the database.P is inserted just
before the other clauses of the same predicate. As we have seen before, the predicate
corresponding to the clauseP must be dynamic: declared using thedynamic/1
directive or entirely asserted at run time.



A.13 Dynamically Accessing and Updating the Database 469

% State of the database
% Before assertion
% hero(ulysses).
% hero(hector).

?- asserta(hero(achilles)).
% State of the database
% After assertion
% hero(achilles).
% hero(ulysses).
% hero(hector).

The predicateassertz/1 also adds a new clause, but as the last one of the proce-
dure this time.

Adding rules is similar. It requires double parentheses, asin

asserta((P :- B, C, D)).

However, it is never advised to assert rules. Modifying rules while running a
program is rarely useful and may introduce nasty bugs.

Novice Prolog programmers may try to communicate the results of a procedure
by asserting facts to the database. This is not a good practice because it hides what
is the real output of a predicate. Results, especially intermediate results, should be
passed along from one procedure to another using arguments.Assertions should only
reflect a permanent change in the program state.

A.13.4 Removing Clauses: Theretract/1 and abolish/2 Predicates

The built-in predicatesretract/1 andabolish/1 remove clauses of a dynamic
predicate.retract(+P) retracts clauseP from the database.

% State of the database
% Before removal
% hero(ulysses).
% hero(achilles).
% hero(hector).

?- retract(hero(hector)).
% State of the database
% After
% hero(ulysses).
% hero(achilles).

?- retract(hero(X)).
X = ulysses ;
X = achilles ;
No
?- hero(X).
No



470 A An Introduction to Prolog

The predicateabolish(+Predicate/Arity) removes all clauses ofPredi-
cate with arity Arity from the database.

A.13.5 Handling Unknown Predicates

When a static predicate is called and is not in the database, it is often a bug. A
frequent cause is due to wrong typing as, for example,parnet(X, Y) instead of
parent(X, Y) , wheren ande are twiddled. For this reason, by default, Prolog
raises an error in the case of such a call.

An effect ofdynamic/1 is to declare a predicate to the Prolog engine. Such a
predicate ‘exists’ then, even if it has no clauses. A call to adynamic predicate that has
no clauses in the database is not considered as an error. It fails, simply and silently.

The Prolog engine behavior to calls to unknown predicates can be modified using
theunknown/2 directive:

:- unknown(-OldValue, +NewValue).

whereOldValue andNewValue can be:

• warning – A call to an unknown predicate issues a warning and fails.
• error – A call to an unknown predicate raises an error. As we saw, this is the

default value.
• fail – A call to an unknown predicate fails silently.

A Prolog flag also defines this behavior. It can be set byset_prolog_flag/2 :

?- set_prolog_flag(+FlagName, +NewValue).

whereFlagName is set tounknown and possible values areerror , warning ,
or fail . The current flag status is obtained bycurrent_prolog_flag/2 :

?- current_prolog_flag(+FlagName, ?Value).

A.14 All-Solutions Predicates

The second-order predicatesfindall/3 , bagof/3 , andsetof/3 return all the
solutions to a given query. The predicatefindall is the basic form of all-solutions
predicates, whilebagof andsetof are more elaborate. We exemplify them with
the database:

character(ulysses, iliad).
character(hector, iliad).
character(achilles, iliad).
character(ulysses, odyssey).
character(penelope, odyssey).
character(telemachus, odyssey).



A.15 Fundamental Search Algorithms 471

findall(+Variable, +Goal, ?Solution) unifies Solution with
the list of all the possible values ofVariable when queryingGoal .

?- findall(X, character(X, iliad), B).
B = [ulysses, hector, achilles]

?- findall(X, character(X, Y), B).
B = [ulysses, hector, achilles, ulysses, penelope,
telemachus]

The predicatebagof(+Variable, +Goal, ?Solution) is similar to
findall/3 , except that it backtracks on the free variables ofGoal :

?- bagof(X, character(X, iliad), Bag).
Bag = [ulysses, hector, achilles]

?- bagof(X, character(X, Y), Bag).
Bag =[ ulysses, hector, achilles], Y = iliad ;
Bag = [ulysses, penelope, telemachus], Y = odyssey ;
No.

Variables inGoal are not considered free if they are existentially quantified.
The existential quantifier uses the infix operator “ˆ ”. Let X be a variable inGoal .
XˆGoal means that there existsX such thatGoal is true.bagof/3 does not back-
track on it. For example:

?- bagof(X, Y^character(X, Y), Bag).
Bag = [ulysses, hector, achilles, ulysses,
penelope, telemachus]

?- bagof(X, Y^(character(X, Y), female(X)), Bag).
Bag = [penelope]

The predicatesetof(+Variable, +Goal, ?Solution) does the same
thing asbagof/3 , except that theSolution list is sorted and duplicates are re-
moved from it:

?- setof(X, Y^character(X, Y), Bag).
Bag = [achilles, hector, penelope, telemachus,
ulysses]

A.15 Fundamental Search Algorithms

Many problems in logic can be represented using a graph or a tree, where finding a
solution corresponds to searching a path going from an initial state to a goal state.
The search procedure starts from an initial node, checks whether the current node



472 A An Introduction to Prolog

meets a goal condition, and if not, goes to a next node. The transition from one
node to a next one is carried out using a successor predicate,and the solution is the
sequence of nodes traversed to reach the goal. In the contextof search, the graph is
also called thestate space.

In this section, we will review some fundamental search strategies and as an
application example, we will try to find our way through the labyrinth shown in
Fig. A.9. As we saw, Prolog has an embedded search mechanism that can be used
with little adaptation to implement other algorithms. It will provide us with the Ari-
adne’s thread to remember our way in the maze with minimal coding efforts.

Room 1 

Room 2 

Room 3 

Room 6 

Room 7 

Room 4 Room 8 

Room 5 

Room 9 

Fig. A.9. The graph representing the labyrinth.

A.15.1 Representing the Graph

We use a successor predicates(X, Y) to represent the graph, whereY is the suc-
cessor ofX. For the labyrinth, thes/2 predicate describes the immediate links from
one room to another. The links between rooms are:

link(r1, r2). link(r1, r3). link(r1, r4). link(r1,
r5). link(r2, r6). link(r2, r7). link(r3, r6).
link(r3, r7). link(r4, r7). link(r4, r8). link(r6,
r9).

Since links can be traversed both ways, thes/2 predicate is:



A.15 Fundamental Search Algorithms 473

s(X, Y) :- link(X, Y).
s(X, Y) :- link(Y, X).

The goal is expressed as:

goal(X) :- minotaur(X).

where

minotaur(r8).

Finally, we could associate a cost to the link, for instance,to take into account its
length. The predicate would then be:

s(X, Y, Cost).

A.15.2 Depth-First Search

A depth-first search is just the application of the Prolog resolution strategy. It ex-
plores the state space by traversing a sequence of successors to the initial node until
it finds a goal. The search goes down the graph until it reachesa node without suc-
cessor. It then backtracks from the bottom to the last node that has successors.

Searching a path in a labyrinth is then very similar to other programs we have
written before. It consists of a first rule to describe the goal condition and sec-
ond recursive one to find a successor node when the condition is not met. The
depth_first_search(+Node, -Path) predicate uses the initial node as in-
put and returns the path to reach the goal:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, [Node]) :-

goal(Node).
depth_first_search(Node, [Node | Path]) :-

s(Node, Node1),
depth_first_search(Node1, Path).

This short program does not work, however, because the path could include in-
finite cycles: Room 2 to Room 6 to Room 2 to Room 6. . . To prevent them, we
need to remember the current path in an accumulator variableand to avoid the
successors of the current node that are already members of the path. We use a
depth_first_search/3 auxiliary predicate, and the new program is:

%% depth_first_search(+Node, -Path)
depth_first_search(Node, Path) :-

depth_first_search(Node, [], Path).

%% depth_first_search(+Node, +CurrentPath,-FinalPath)
depth_first_search(Node, Path, [Node | Path]) :-

goal(Node).



474 A An Introduction to Prolog

depth_first_search(Node, Path, FinalPath) :-
s(Node, Node1),
\+ member(Node1, Path),
depth_first_search(Node1, [Node | Path],FinalPath).

The result of the search is:

?- depth_first_search(r1, L).
L = [r8, r4, r7, r3, r6, r2, r1] ;
L = [r8, r4, r7, r2, r1] ;
L = [r8, r4, r7, r2, r6, r3, r1] ;
L = [r8, r4, r7, r3, r1] ;
L = [r8, r4, r1] ;
No
?-

A.15.3 Breadth-First Search

The breadth-first search explores the paths in parallel. It starts with the first node, all
the successors of the first node, all the successors of the successors, and so on, until
it finds a solution.

If the list [Node | Path] describes a path to a node, the search needs to ex-
pand all the successors ofNode. It generates the corresponding paths as lists. There
are as many lists as there are successors toNode. The search then sets the successors
as the heads of these lists. This is done compactly using thebagof/3 predicate:

expand([Node | Path], ExpandedPaths) :-
bagof(

[Node1, Node | Path],
(s(Node, Node1), \+ member(Node1, Path)),
ExpandedPaths).

As with the depth-first search, the breadth-first search consists of two rules. The
first rule describes the goal condition. It extracts the firstpath from the list and
checks whether the head node is a goal. The second rule implements the recur-
sion. It expands the first path – the head of the list – into a list of paths that go
one level deeper in the graph and appends them to the end of theother paths. The
breadth_first_search(+Node, -Path) predicate uses the initial node as
input and returns the path to reach the goal. The program needs to start with a list of
lists, and it uses the auxiliary predicatebf_search_aux/2 .

%% breadth_first_search(+Node, -Path)
breadth_first_search(Node, Path) :-

bf_search_aux([[Node]], Path).

bf_search_aux([[Node | Path] | _], [Node | Path]) :-
goal(Node).



A.15 Fundamental Search Algorithms 475

bf_search_aux([CurrentPath | NextPaths],
FinalPath) :-

expand(CurrentPath, ExpandedPaths),
append(NextPaths, ExpandedPaths, NewPaths),
bf_search_aux(NewPaths, FinalPath).

The program is not completely correct, however, becauseexpand/2 can fail
and make the whole search fail. A failure ofexpand/2 means that the search cannot
go further in this path and it has found no goal node in it. We can remove the path
from the list then. To reflect this, we must add a second rule toexpand/2 that sets
the path to the empty list and prevents the first rule from backtracking:

expand([Node | Path], ExpandedPaths) :-
bagof(

[Node1, Node | Path],
(s(Node, Node1), \+ member(Node1, Path)),
ExpandedPaths),

!.
expand(Path, []).

The result of the search is:

?- breadth_first_search(r1, L).
L = [r8, r4, r1] ;
L = [r8, r4, r7, r2, r1] ;
L = [r8, r4, r7, r3, r1] ;
L = [r8, r4, r7, r3, r6, r2, r1] ;
L = [r8, r4, r7, r2, r6, r3, r1] ;
No
?-

The breadth-first search strategy guarantees that it will find the shortest path to
the solution. A disadvantage is that it must store and maintain all exploration paths
in parallel. This requires a huge memory, even for a limited search depth.

A.15.4 A* Search

The A* search is a variation and an optimization of the breadth-first search. Instead
of expanding the first path of the list, it uses heuristics to select a better candidate.
While searching the graph, A* associates a value to paths it traverses. This value is
a functionf of the node being traversed.f(n) at noden is the sum of two terms
f(n) = g(n) + h(n), whereg(n) is the length of the path used to reach noden and
h(n) is the estimate of the remaining length to reach the goal node. From a given
node, A* ranks the possible subsequent nodes minimizingf(n). It then explores
“best nodes” first and thus avoids a blind searching.

The main difficulty of the A* search is to find a suitableh function. Its presenta-
tion is outside the scope of this appendix. Russell and Norvig (2003) examine search
strategies in detail. Bratko (2001) describes an implementation of A* in Prolog.



476 A An Introduction to Prolog

A.16 Input/Output

The first Prolog systems had only primitive input/output facilities. Standard Prolog
defines a complete new set of predicates. They represent a major change in the Pro-
log language, and although they are more flexible they are notuniversally accepted
yet. This section introduces both sets of predicates. It outlines Standard Prolog in-
put/output predicates and predicates conforming to the older tradition of Edinburgh
Prolog. Most input/output predicates are deterministic, that is, they give no alterna-
tive solutions upon backtracking.

A.16.1 Reading and Writing Characters with Edinburgh Prolog

In Edinburgh Prolog, reading characters from the keyboard and writing to the screen
is carried out usingget0/1 andput/1 . Both predicates process characters using
their ASCII codes.get0/1 unifies with−1 when it reaches the end of a file. Here
are some examples of use:

?- get0(X).
a ?

X = 97

?- put(65).
a

?- get0(X).
^D

X = -1

A.16.2 Reading and Writing Terms with Edinburgh Prolog

The built-in predicatesread/1 andwrite/1 read and write terms from the current
input and output streams.read(?Term) reads one term:

?- read(X).
character(ulysses, odyssey).

X = character(ulysses, odyssey)

where the input term must be terminated by a period. When reaching the end of a
file, X unifies with the build-in atomend_of_file :

?- read(X).
^D
X = end_of_file



A.16 Input/Output 477

Writing terms is similar.write(+Term) writes one term to the current output
stream andnl/0 prints a new line:

?- T = character(ulysses, odyssey), write(T), nl.
character(ulysses, odyssey)

T = character(ulysses, odyssey)
?-

A.16.3 Opening and Closing Files with Edinburgh Prolog

Prolog input and output predicates normally write on the screen – the standard out-
put – and read from the keyboard – the standard input. The predicatessee/1 and
tell/1 redirect the input and output so that a program can read or write any file.

see/1 andtell/1 open a file for reading and for writing. Then input/output
predicates such asget0/1 , read/1 or put/1 , write/1 are redirected to the
current open file. Several files may be open at the same time. The program switches
between open files usingsee/1 or tell/1 until they are closed.seen/0 and
told/0 close the open input and the open output, respectively, and return to the
standard input/output, that is, to the keyboard and the screen. Let us show this with
an example.

see(in_file), Opensin_file as the current input stream.
see(user), The current stream becomes the user – the key-

board.
see(in_file), in_file becomes the current input stream

again with the reading the position it had before.
seen, Closes the current input stream. The current

stream becomes the keyboard.
seeing(IN_STREAM), IN_STREAM unifies with the current input

stream.
tell(out_file), Opensout_file as the current output stream

(creates a new file or empties a previously exist-
ing file).

telling(OUT_STREAM), OUT_STREAM unifies with the current output
stream.

tell(user), The current output stream becomes the user –
the screen.

told. Closes the current output stream. The current
output stream becomes the user.

Here is a short program to read a file:

read_file(FileName, CodeList) :-
see(FileName),
read_list(CodeList),



478 A An Introduction to Prolog

seen.

read_list([C | L]) :-
get0(C),
C =\= -1, % end of file
!,
read_list(L).

read_list([]).

A.16.4 Reading and Writing Characters with Standard Prolog

Standard Prolog uses streams to read and write characters. Astream roughly cor-
responds to an open file. Streams are divided into output streams or sinks, and in-
put streams or sources. By default, there are two current open streams: the standard
input stream, which is usually the keyboard, and the standard output stream, the
screen. Other streams are opened and closed usingopen/4 , open/3 , close/1 ,
andclose/2 .

The predicates to read and write a character areget_char/1 , get_char/2 ,
put_char/1 , andput_char/2 :

• get_char(?Char) unifiesChar with the next character of the current input
stream.

• get_char(+Stream, ?Char) unifiesChar with the next character of the
open input streamStream . get_char/1 andget_char/2 predicates unify
with end_of_file when they reach the end of a file.

• put_char(+Char) writesChar to the current output stream.
• put_char(+Stream, ?Char) writesChar to the open outputStream .
• nl/0 andnl(+Stream) write a new line to the current output stream or to

Stream .

Here is a short example:

?- get_char(X).
a ?

X = a

?- put_char(a).
a

?- get_char(X).
^D

X = end_of_file



A.16 Input/Output 479

Instead of reading and writing characters, we may want to read or write their
numeric code, ASCII or Unicode, as with Edinburgh’sget0/1 . The corresponding
Standard Prolog predicates areget_code/1 , get_code/2 , put_code/1 , and
put_code/2 .

The predicatesget_char andget_code read a character or a code, remove
it from the input stream, and move to the next character. Sometimes it is useful to
read a character without removing it. The predicatespeek_char andpeek_code
do just that. They unify with the current character but stay at the same position and
leave the character in the stream.

A.16.5 Reading and Writing Terms with Standard Prolog

The Standard Prolog predicatesread/1 and write/1 are identical to those of
Edinburgh Prolog:

• read(?Term) reads one term from the current input stream.
• write(+Term) writes a term to the current output stream.

read/2 andwrite/2 read and write terms from and to a file:

• read(+Stream, ?Term) reads a term fromStream .
• write(+Stream, ?Term) writes a term toStream .

The predicatesread_term andwrite_term read and write terms with a list
of options, either to the current input/output,read_term/2 andwrite_term/2 ,
or to a file,read_term/3 andwrite_term/3 . The options make it possible to
adjust the printing format, for instance. They may depend onthe implementation and
the operating system. Consult your manual to have the complete list. The predicates
read andwrite are equivalent toread_term andwrite_term with an empty
list of options.

A.16.6 Opening and Closing Files with Standard Prolog

The predicates to open and close a stream areopen/4 , open/3 , close/1 , and
close/2 :

• open(+SourceSink, +Mode, -Stream) opens the fileSourceSink
in an input or outputMode. TheMode value is one ofread , write , append ,
or update . Stream unifies with the opened stream and is used for the subse-
quent input or output operations.

• open(+SourceSink, +Mode, -Stream, +Options) opens the file
with a list of options.open/3 is equivalent toopen/4 with an empty list of
options. Consult your manual to have the complete list.

• close(+Stream) closes the streamStream .
• close(+Stream, +Options) closes the streamStream with a list of op-

tions.close/1 is equivalent toclose/2 with an empty list of options.



480 A An Introduction to Prolog

Here is a short program to read a file with Standard Prolog predicates:

read_file(FileName, CharList) :-
open(FileName, read, Stream),
read_list(Stream, CharList),
close(Stream).

read_list(Stream, [C | L]) :-
get_char(Stream, C),
C \== end_of_file, % end of file
!,
read_list(Stream, L).

read_list(_, []).

Other useful predicates includecurrent_input/1 , current_output/1 ,
set_input/1 , andset_output/1 :

• current_input(?Stream) unifiesStream with the current input stream.
• current_output(?Stream) unifiesStream with the current output.
• set_input(+Stream) setsStream to be the current input stream.
• set_output(+Stream) setsStream to be the current output stream.

A.16.7 Writing Loops

Programmers sometimes wonder how to write iterative loops in Prolog, especially
with input/output to read or to write a sequence of terms. This is normally done with
a recursive rule, as to read a file. Counting numbers down to 0 takes the form:

countdown(X) :-
number(X),
X < 0.

countdown(X):-
number(X),
X >= 0,
write(X), nl,
NX is X - 1,
countdown(NX).

For example,

?- countdown(4).
4
3
2
1
0
?-



A.17 Developing Prolog Programs 481

In some other cases, backtracking using therepeat/0 built-in predicate can
substitute a loop. Therepeat/0 definition is:

repeat.
repeat :- repeat.

repeat never fails and when inserted as a subgoal, any subsequent backtrack-
ing goes back to it and the sequence of subgoals to its right gets executed again.
So, a sequence of subgoals can be executed any number of timesuntil a condition
is satisfied. Theread_write/1 predicate below reads and writes a sequence of
atoms until the atomend is encountered. It takes the form of a repetition (repeat )
of reading a termX usingread/1 , writing it (write/1 ), and a final condition (X
== end ). It corresponds to the rule:

read_write :-
repeat,
read(X),
write(X), nl,
X == end,
!.

A.17 Developing Prolog Programs

A.17.1 Presentation Style

Programs are normally written once and then are possibly read and modified several
times. A major concern of the programmer should be to write clear and legible code.
It helps enormously with the maintenance and debugging of programs.

Before programming, it is essential first to have a good formulation and decom-
position of the problem. The program construction should then reflect the logical
structure of the solution. Although this statement may seemobvious, its implemen-
tation is difficult in practice. Clarity in a program structure is rarely attained from
the first time. First attempts are rarely optimal but Prolog enables an incremental
development where parts of the solution can be improved gradually.

A key to the good construction of a program is to name things properly. Cryptic
predicates or variable names, such assyntproc , def_code , X, Ynn, and so on,
should be banned. It is not rare that one starts with a predicate name and changes it
in the course of the development to reflect a better description of the solution.

Since Prolog code is compact, the code of a clause should be short to remain
easy to understand, especially with recursive programs. Ifnecessary, the programmer
should decompose a clause into smaller subclauses. Cuts andasserts should be kept
to a minimum because they impair the declarativeness of a program. However, these
are general rules that sometimes are difficult to respect when speed matters most.

Before its code definition, a predicate should be described in comments together
with argument types and modes:



482 A An Introduction to Prolog

% predicate(+Arg1, +Arg2, -Arg3).
% Does this and that
% Arg1: list, Arg2: atom, Arg3: integer.

Clauses of a same predicate must be grouped together, even ifsome Prologs
permit clauses to be disjoined. The layout of clauses shouldalso be clear and adopt
common rules of typography. Insert a space after commas or dots, for instance. The
rule

pred1 :- pred2(c,d),e,f.

must be rejected because of sticking commas and obfuscated predicate names. Goals
must be indented with tabulations, and there should be one single goal per line. Then

A :-
B,
C,
D.

should be preferred to

A :- B, C, D.

except when the body consists of a single goal. The rule

A :- B.

is also acceptable.

A.17.2 Improving Programs

Once a program is written, it is generally possible to enhance it. This section intro-
duces three techniques to improve program speed: goal ordering, memo functions,
and tail recursion.

Order of Goals. Ordering goals is meaningful for the efficiency of a program be-
cause Prolog tries them from left to right. The idea is to reduce the search space as
much as possible from the first goals. If predicatep1 has 1000 solutions in 1 s and
p2 has 1 solution taking 1000 hours to compute, avoid conjunction:

p1(X), p2(X).

A better ordering is:

p2(X), p1(X).



A.17 Developing Prolog Programs 483

Lemmas or Memo Functions. Lemmas are used to improve the program speed.
They are often exemplified with Fibonacci series. Fibonacciimagined around year
1200 how to estimate a population of rabbits, knowing that:

• A rabbit couple gives birth to another rabbit couple, one male and one female,
each month (one month of gestation).

• A rabbit couple reproduces from the second month.
• Rabbits are immortal.

We can predict the number of rabbit couples at monthn as a function of the
number of rabbit couples at monthn− 1 andn− 2:

rabbit(n) = rabbit(n− 1) + rabbit(n− 2)

A first implementation is straightforward from the formula:

fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(M, N) :-

M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2.

However, this program has an expensive double recursion andthe same value
can be recomputed several times. A better solution is to store Fibonacci values in the
database usingasserta/1 . So an improved version is

fibonacci(1, 1).
fibonacci(2, 1).
fibonacci(M, N) :-

M > 2,
M1 is M - 1, fibonacci(M1, N1),
M2 is M - 2, fibonacci(M2, N2),
N is N1 + N2,
asserta(fibonacci(M, N)).

The rule is then tried only if the value is not in the database.
The generic form of the lemma is:

lemma(P):-
P,
asserta((P :- !)).

with “ ! ” to avoid backtracking.



484 A An Introduction to Prolog

Tail Recursion. A tail recursion is a recursion where the recursive call is the last
subgoal of the last rule, as in

f(X) :- fact(X).
f(X) :- g(X, Y), f(Y).

Recursion is generally very demanding in terms of memory, which grows with
the number of recursive calls. A tail recursion is a special case that the interpreter
can transform into an iteration. Most Prolog systems recognize and optimize it. They
execute a tail-recursive predicate with a constant memory size.

It is therefore significant not to invert clauses of the previous program, as in

f(X) :- g(X, Y), f(Y).
f(X) :- fact(X).

which is not tail recursive.
It is sometimes possible to transform recursive predicatesinto a tail recursion

equivalent, adding a variable as forlength/2 :

length(List, Length) :-
length(List, 0, Length).

length([], N, N).
length([X | L], N1, N) :-

N2 is N1 + 1,
length(L, N2, N).

It is also sometimes possible to force a tail recursion usinga cut, for example,

f(X) :- g(X, Y), !, f(Y).
f(X) :- fact(X).

Exercises

A.1. Describe a fragment of your family using Prolog facts.

A.2. Using the model ofparent/2 andancestor/2 , write rules describing fam-
ily relationships.

A.3. Write a program to describe routes between cities. Use aconnect/2 predicate
to describe direct links between cities as facts, for example, connect(paris,
london) , connect(london, edinburgh) , etc., and write theroute/2 re-
cursive predicate that finds a path between cities.

A.4. Unify the following pairs:

f(g(A, B), a) = f(C, A).
f(X, g(a, b)) = f(g(Z), g(Z, X)).
f(X, g(a, b)) = f(g(Z), g(Z, Y)).



A.17 Developing Prolog Programs 485

A.5. Trace theson/2 program.

A.6. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- !, g(X), h(Y).
g(a).
g(b).
h(b).

A.7. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- g(X), !, h(Y).
g(a).
g(b).
h(b).

A.8. What is the effect of the query

?- f(X, X).

given the database:

f(X, Y) :- g(X), h(Y), !.
g(a).
g(b).
h(b).

A.9. What is the effect of the query

?- \+ f(X, X).

given the databases of the three previous exercises (Exercises A.6–A.8)? Provide
three answers.

A.10. Write thelast(?List, ?Element) predicate that succeeds ifElement
is the last element of the list.

A.11. Write the nth(?Nth, ?List, ?Element) predicate that succeeds if
Element is theNth element of the list.

A.12. Write themaximum(+List, ?Element) predicate that succeeds ifEle-
ment is the greatest of the list.



486 A An Introduction to Prolog

A.13. Write theflatten/2 predicate that flattens a list, i.e., removes nested lists:

?- flatten([a, [a, b, c], [[[d]]]], L).
L = [a, a, b, c, d]

A.14. Write thesubset(+Set1, +Set2) predicate that succeeds ifSet1 is a
subset ofSet2 .

A.15. Write the subtract(+Set1, +Set2, ?Set3) predicate that unifies
Set3 with the subtraction ofSet2 from Set1 .

A.16. Write theunion(+Set1, +Set2, ?Set3) predicate that unifiesSet3
with the union ofSet2 andSet1 . Set1 andSet2 are lists without duplicates.

A.17. Write a program that transforms the lowercase characters ofa file into their
uppercase equivalent. The program should process accentedcharacters, for example,
é will be mapped toÉ.

A.18. Implement A* in Prolog.




